Dear John:

I have been reading for a couple of days, and with a lot of profit — in particular the old paper by Siemens, Sobel, Bode and Bondorf, Nucl. Phys. A251, 502 (75), and the Cugnon-Mitsutani-Vandermeulen article on equilibration, Nucl. Phys. A352, 505 (81). I have "discovered" that there is an enormous difference between glancing over a paper, and really reading it. Finally I worked through the hadrochemistry papers. Result: I know exactly how and why these models, and the fireball model, all lead to different $\bar{\nu}$-yield predictions. Now this is a long story.

The essential point: cascade and hadrochemistry show that there never exists chemical equilibrium, at no time in the reaction (this eliminates both the fireball and hydrodynamics — and also Hagedorn). The $\bar{\nu}$-yield is a frozen-in feature of the non-equilibrium stage of the reaction. In $\text{La} + \text{La}$ or $\text{Pb} + \text{Pb}$, about 2-3 fm/c after the classical overlap time, there is the best chance of near-equilibrium conditions. But even then, the cascade model $\bar{\nu}$-yield exceeds a chemical model abundance by a two: it represents a frozen-in overshoot over the equilibrium concentration.

Now how does the cascade $\bar{\nu}$-yield come about?
Two principal stages:

1. Early interpenetration, $p/p_0 \rightarrow 2g^{cm}$, non-equilibrium. The initial part of this got to be a realistic description of what is going on in reality. Check: the cascade code describes the peripheral π^- yield which is basically the same configuration, turned around by 90°.

2. Compressed zone develops. Shock compression > superposition density; $p/p_{\text{shock}} > 2g+1$. Δ's are produced:
 a. in the shock zone thermally
 b. in spectator – shock zone nuclear interact.

i.e. they go on in density $p/p_0 \times 2g+1$, but only a. is a "chemical" process, b. still is driven by relative motion spectator/thermal fireball at rest in CM.

This does not invalidate the simple "fireball subtraction result for the "compressional" energy", but a different argumentation is needed in this scenario. And in order to do this, it is very important to know whether the participant p_{\perp} distribution inside the "test sphere" approaches p_{\perp} at max p/p_0-time (or at the time of its maximum total energy or total E_{\perp} content). If yes: argumentation about compressional E_{\perp} remains straightforward. But if $T_{\parallel} > T_{\perp}$ by a large amount, there are possible errors in E_{\perp} of the order of $\frac{2}{3}(T_{\parallel} - T_{\perp})$.

By the way I understand now why $R > 1$ at large times – basically our handwaving guess was right. In non-equilibrium, p_{\perp} lacks at high p_{\perp} at low p_{\perp} late times in fixed sphere \Rightarrow only slow particles left in there \Rightarrow for these, p_{\parallel} is undispersed; $R > 1$.

Will phone you about this. Regards! Reinhard
\[R = \frac{\langle P_{\perp} + 1 \rangle}{\langle P_{\parallel} \rangle} \] as \text{ fct. of time} in cascade code

describes deviation from equilibrium but in a peculiar manner. \text{ In the test sphere:}

\[P_{\perp} \ll P_{\text{beam}} \]
\[P_{\perp} \ll \langle P^2 \rangle \approx 130 \text{ GeV/c} \]
\[R \ll 1 \]

\[4 \text{ fm/c} \]

\[\frac{\langle P_{\perp} \rangle}{\langle P_{\parallel} \rangle} \Rightarrow \text{ temperature + spectator} \]
\[\text{ spectator + spectator beam} \]
\[\text{ } /4 \text{ of } A \text{ unscattered} \]

\[\Rightarrow \text{ look for } \text{ participant } R \]
\[R \Rightarrow 1 \text{ ??} \]
\[R < 1 \]

\[\text{ somewhat later than classical overlap time: max. overall density} \]

\[11 \text{ fm/c} \]

\[\text{ spectator influx stops, outflux } > \text{ influx } \Rightarrow \langle P_{\parallel} \rangle \Rightarrow \text{ hadron} \]

\[R \Rightarrow 1 \]

\[15 \text{ fm/c} \]

\[\text{ However: if there has never been perfect thermalization} \]
\[P_+ = \text{ spectrum lacks at high momenta} \]
\[\Rightarrow \text{ these result from slow-down!} \]

\[\text{ at later times, when only slow nucleons are left behind in the test sphere:} \]
\[R > 1 \text{ : artifact }! \text{ follows from similar reason as } R < 1 \]

\[\Rightarrow \text{ Look at } R \text{ at time when } E_{\text{inspire}} \text{ is maximal!} \]

\[\text{ Cugnon et al., Nucl.Phys. A552, 505(81)} \text{ Fig. 6} \]
Important for shock-front model:

at which time does $R_{\text{participants}} \rightarrow 1$

in $\text{Cu+Cu, La+La at } 1 \text{ GeV}$?

If $R \rightarrow 1$ (or whatever reasonable max. value)
already at about half max. interpenetration:

important for π^- production!!:
incoming nucleons interact in high-
density fireball at rest in CM
not with nucleons going more or less
opposite \Rightarrow less relative NN-energy \Rightarrow
\Rightarrow less Δ-production in subsequent collisions

i.e. we have a 2-phase π^- production

1) Initial: interpenetration, buildup of shock front:
interactions go on at density 2γ among
mostly "virgin" pairs: E_{CM} relative $= 2E_{\text{CM}}/A$

2) At $t \geq R$: in La+La, Pb+Pb there should
$2\beta \gamma \text{ cm now exist a shock zone}$
p/p_0 (shock zone) $\geq 2\gamma + 1!$ as we seem to observe
thermal equilibrium approached in shock zone
\Rightarrow new Δ's are created by incoming nucleons interac-
ting inside the "fireball" (lower E_{CM} relative than in
phase I). The shock zone has a Δ-content that
results from Phase I and Phase II: not an chemical
equilibrium concentration at any time!