Using particle correlations to probe the medium produced at RHIC

Helen Caines - Yale University

Oxford/RAL
November 2008
Relativistic Heavy-Ion Collider (RHIC)

Au+Au @ $\sqrt{s_{NN}} = 200$ GeV

$v = 0.99995 \cdot c$

1 km

AGS

TANDEMS

PHENIX

PHOBOS

STAR

BRAHMS
QGP expectation came from Lattice

\(\varepsilon/T^4 \sim \# \) degrees of freedom

confined: few d.o.f.

deconfined: many d.o.f.

\(T_c = (173 \pm 15) \text{ MeV} \)

\(\varepsilon_c \sim 0.7 \text{ GeV/fm}^3 \)
QGP expectation came from Lattice

$\frac{\varepsilon}{T^4} \sim \# \text{ degrees of freedom}$

$T_C \approx 173 \text{ MeV} \approx 2 \cdot 10^{12} \text{ K}$

$\varepsilon_C \approx 0.7 \text{ GeV/fm}^3$ (~6x normal nuclear densities)

$T_C \approx 173 \text{ MeV} \approx 2 \cdot 10^{12} \text{ K}$

$\varepsilon_C \approx 0.7 \text{ GeV/fm}^3$ (~6x normal nuclear densities)
RHIC has created a new state of matter

The QGP is the:

- **hottest** ($T=200-400$ MeV ~ 2.5×10^{12} K)
- **densest** ($\varepsilon = 30-60 \ \varepsilon_{\text{nuclear matter}}$)

matter ever studied in the lab. It flows as a

- **(nearly) perfect fluid**

with systematic patterns, consistent with

- **quark degree of freedom**

and a viscosity to entropy density ratio

- **lower**

than any other known fluid.
RHIC has created a new state of matter

The QGP is the:

- **hottest** \((T=200-400 \text{ MeV} \sim 2.5 \times 10^{12} \text{ K}) \)
- **densest** \((\varepsilon = 30-60 \varepsilon_{\text{nuclear matter}}) \)

matter ever studied in the lab.

It flows as a

- **(nearly) perfect fluid**

with systematic patterns, consistent with

quark degree of freedom

and a viscosity to entropy density ratio

lower

than any other known fluid.

Want to learn more about the properties
Elliptic flow – rapid thermalization

A Fourier expansion used to describe the angular distribution of the particles:

\[
\frac{dN}{d\varphi} \propto 1 + 2v_2 \cos[2(\varphi - \psi_R)] + \ldots
\]
Elliptic flow – rapid thermalization

A Fourier expansion used to describe the angular distribution of the particles

\[\frac{dN}{d\varphi} \propto 1 + 2v_2 \cos[2(\varphi - \psi_R)] + \ldots \]

Driving spatial anisotropy vanishes \(\Rightarrow \) self quenching
Elliptic flow – rapid thermalization

A Fourier expansion used to describe the angular distribution of the particles

$$\frac{dN}{d\varphi} \propto 1 + 2v_2 \cos[2(\varphi - \psi_R)] + ...$$

Driving spatial anisotropy vanishes ⇒ self quenching

Sensitive to early interactions and pressure gradients
The flow is ~Perfect

Huge asymmetry found at RHIC

- massive effect in azimuthal distribution w.r.t reaction plane
- At higher p_T: Factor 3:1 peak to valley from 25% v_2
The flow is ~Perfect

Huge asymmetry found at RHIC
- massive effect in azimuthal distribution w.r.t reaction plane
- At higher p_T: Factor 3:1 peak to valley from 25% v_2

“fine structure” $v_2(p_T)$
- ordering with mass of particle
- good agreement with ideal hydrodynamics (zero viscosity, $\lambda=0$)

⇒ “perfect liquid”
The constituents “flow”

\[m_T = \sqrt{p_T^2 + m_0^2} \]
The constituents “flow”

- Scaling flow parameters by quark content n_q (baryons=3, mesons=2) resolves meson-baryon separation of final state hadrons
The constituents “flow”

- Scaling flow parameters by quark content n_q (baryons=3, mesons=2) resolves meson-baryon separation of final state hadrons

Constituents of liquid are partons
Viscous fluid

• supports a shear stress

• viscosity η:

 $\eta \approx$ momentum density \times mean free path

 $\approx n\bar{p}\lambda = n\bar{p}\frac{1}{n\sigma} = \frac{\bar{p}}{\sigma}$

• small $\eta \Rightarrow$ large $\sigma \Rightarrow$ strong couplings
How perfect is “Perfect”?

Viscous fluid

- supports a shear stress
- viscosity η:

 $\eta \approx \text{momentum density} \times \text{mean free path}$

 $\approx n\bar{p}\lambda = n\bar{p}\frac{1}{n\sigma} = \frac{\bar{p}}{\sigma}$

- small $\eta \Rightarrow$ large $\sigma \Rightarrow$ strong couplings

Hydrodynamic calculations for RHIC assumed zero viscosity

$\eta = 0 \Rightarrow$ “perfect fluid”

- But there is a (conjectured) quantum limit:

 $\eta \geq \frac{\hbar}{4\pi} \text{(Entropy Density)} = \frac{\hbar}{4\pi} s$

 N.B.: water (at normal conditions) $\eta/s \sim 380 \frac{\hbar}{4\pi}$
What is η/s at RHIC?

conjectured quantum limit

- η/s vs $4\pi \eta/s$
 - Drescher et al.: arXiv:0704.3553

Observables that are sensitive to shear

- **Elliptic Flow**

- **p_T Fluctuations**

- **Heavy quark motion (drag, flow)**
Probing the medium - Jet production

Early production in parton-parton scatterings with large Q^2.

Direct interaction with partonic phases of the reaction

From p+p
- Obtain jet rate
- Obtain fragmentation functions
Probing the medium - Jet production

Early production in parton-parton scatterings with large Q^2.

Direct interaction with partonic phases of the reaction

From p+p
- Obtain jet rate
- Obtain fragmentation functions

In A+A look at
- attenuation or absorption of jets: “jet quenching”
- suppression of high p_T hadrons
- modification of angular correlation
- changes of particle composition
Probing the medium - Jet production

Early production in parton-parton scatterings with large Q^2.

Direct interaction with partonic phases of the reaction

From p+p
- Obtain jet rate
- Obtain fragmentation functions

In A+A look at
- attenuation or absorption of jets: “jet quenching”
- suppression of high p_T hadrons
- modification of angular correlation
- changes of particle composition

Differences due to medium
Jets – a calibrated probe?

Jet production in p+p understood in pQCD framework
Jets – a calibrated probe?

Jet production in p+p understood in pQCD framework
Particle production in p+p also well modeled.

Seems we have a reasonably calibrated probe
Charged hadron ξ in p+p 200 GeV

Reasonable agreement between Pythia and data

M. Heinz
Hard Probes 2008
Charged hadron ξ in p+p 200 GeV

Reasonable agreement between Pythia and data

Are these differences onset of beyond LL effects?
ξ for strange hadrons

- charged
- K^0_{Short} (x5)
- Λ (x5)

R<0.4

R<0.5

R<0.7

$10 < E_{reco} < 15$

$p_T < 0.5$

$15 < E_{reco} < 20$

$20 < E_{reco} < 50$

Clear differences between particles

M. Heinz Hard Probes 2008
Back to probing the medium

Compare Au+Au with p+p Collisions ⇒ \(R_{AA} \)

Nuclear Modification Factor:

\[
R_{AA}(p_T) = \frac{\text{Yield}(A + A)}{\text{Yield}(p + p) \times \langle N_{\text{coll}} \rangle}
\]

Average number of NN collision in an AA collision

No “Effect”:
- \(R < 1 \) at small momenta
- \(R = 1 \) at higher momenta where hard processes dominate

Suppression: \(R < 1 \)
High-\(p_T\) suppression

Observations at RHIC:

1. Photons are not suppressed
 - Good! \(\gamma\) don’t interact with medium
 - \(N_{\text{coll}}\) scaling works
High-\(p_T \) suppression

Observations at RHIC:

1. **Photons are not suppressed**
 - Good! \(\gamma \) don’t interact with medium
 - \(N_{\text{coll}} \) scaling works

2. **Hadrons are suppressed in central collisions**
 - Huge: factor 5
High-p_T suppression

Observations at RHIC:

1. Photons are not suppressed
 - Good! γ don’t interact with medium
 - N_{coll} scaling works

2. Hadrons are suppressed in central collisions
 - Huge: factor 5

3. Hadrons are not suppressed in peripheral collisions
 - Good! medium not dense
Interpretation

Gluon radiation: Multiple final-state gluon radiation off the produced hard parton induced by the traversed dense colored medium.
Interpretation

Gluon radiation: Multiple final-state gluon radiation off the produced hard parton induced by the traversed dense colored medium

- Mean parton energy loss \propto medium properties:
 - $\Delta E_{\text{loss}} \sim \rho_{\text{gluon}}$ (gluon density)
 - Coherence among radiated gluons
 - $\Delta E_{\text{loss}} \sim \Delta L^2$ (medium length)
 - $\Rightarrow \sim \Delta L$ with expansion

- Characterization of medium
 - transport coefficient \hat{q} is $\langle k_T^2 \rangle$ transferred per unit path length
 $$\hat{q} = \frac{\mu^2}{L} \approx \frac{\mu^2}{\lambda}$$
 $$\hat{q} = \hat{q}(\vec{r}, \tau)$$
 - gluon density dN_g/dy
The model landscape (not exhaustive)

<table>
<thead>
<tr>
<th>Model</th>
<th>Implementation Details</th>
<th>Geometry/Collisional Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>PQM (Parton Quench model)</td>
<td>Implementation of BDMPS (calc. E loss via coherent gluon radiation - many soft scattering approx.)</td>
<td>Realistic geometry, static medium, q time average (depends on initial density, scheme evolution dependent), no initial state multiple scatterings, no modified PDFs</td>
</tr>
<tr>
<td>GLV</td>
<td>Implementation of GLV formalism (calc. E loss via gluon bremsstrahlung - few hard scatterings)</td>
<td>Realistic geometry, Bjorken expanding medium - calc. a priori (w/o E loss) average path length - use to calc. partonic E loss</td>
</tr>
<tr>
<td>WHDG</td>
<td>Implementation of GLV formalism (calc. E loss via gluon bremsstrahlung - few hard scatterings) + collisional energy loss</td>
<td>Realistic geometry - integral over all paths, expanding medium, no initial state multiple scatterings</td>
</tr>
<tr>
<td>ZOWW</td>
<td>Modified fragmentation model (radiative gluon E loss incorporated into effective medium modified FF)</td>
<td>Hard sphere geometry, expanding medium</td>
</tr>
</tbody>
</table>
Constraining $\langle q \rangle$

<table>
<thead>
<tr>
<th>Model</th>
<th>Opacity Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>PQM</td>
<td>$\langle \bar{q} \rangle = 13.2 \ (2.1 - 3.2)$</td>
</tr>
<tr>
<td>GLV</td>
<td>$dN_g/dy = 1400 \ (270 - 150)$ ($\langle \bar{q} \rangle \sim 7$)</td>
</tr>
<tr>
<td>WHDG</td>
<td>$dN_g/dy = 1400 \ (200 - 375)$</td>
</tr>
<tr>
<td>ZOWW</td>
<td>$\varepsilon_0 = 1.9 \ (0.2 - 0.5)$ ($\langle \bar{q} \rangle \sim 1$)</td>
</tr>
</tbody>
</table>

$\langle \bar{q} \rangle$ only the natural unit in PQM

Neat other observables to dis-entangle all the possible effects
Jet correlations in heavy-ion collisions

- Full jet reconstruction very challenging background from bulk similar to signal for jet $p_T < \sim 30$ GeV

p+p collisions

Au+Au collisions
Jet correlations in heavy-ion collisions

- Full jet reconstruction very challenging background from bulk similar to signal for jet $p_T<\sim30\text{ GeV}$

Use di-hadron correlations

Back-to-back (away side) jet

Trigger (near side) jet

$p_{T\text{assoc}}$, $\Delta\phi$, $p_{T\text{trigger}}$, ϕ_{trigger}
RHIC seminal di-hadron results

“The disappearance of the away-side jet”

d+Au results similar to p+p

→ final state interaction

→ d+Au can be used as the reference measurement instead of p+p

\[
\begin{align*}
4 < p_T^{\text{trig}} &< 6 \text{ GeV/c} \\
p_T^{\text{assoc}} &> 2 \text{ GeV/c}
\end{align*}
\]

\[d+Au \text{ FTPC-Au 0-20\%} \]

\[p+\text{p min. bias} \]

\[Au+Au \text{ Central} \]

Phys Rev Lett 90, 082302
RHIC seminal di-hadron results

“The disappearance of the away-side jet”

d+Au results similar to p+p
→ final state interaction
→ d+Au can be used as the reference measurement instead of p+p

“High p_T Punch-through”

Away side correlation reappears for high p_T correlations
→ yield reduced compared to d+Au

\[
\frac{1}{N_{\text{trigger}}} \frac{dN}{d(\Delta \phi)}
\]

\begin{align*}
&\begin{array}{|c|c|}
\hline
4 < p_T^{\text{trig}} < 6 \text{ GeV/c} & p_T^{\text{assoc}} > 2 \text{ GeV/c} \\
\hline
\end{array}
\end{align*}

\[
\Delta \phi \text{ (radians)}
\]

\[
\begin{align*}
&\begin{array}{|c|c|}
\hline
8 < p_T^{\text{trig}} < 15 \text{ GeV/c} & p_T^{\text{assoc}} > 6 \text{ GeV/c} \\
\hline
\end{array}
\end{align*}
\]

\[
\begin{align*}
&\begin{array}{|c|c|c|}
\hline
\text{d+Au} & \text{Au+Au 20-40\%} & \text{Au+Au 0-5\%} \\
\hline
\end{array}
\end{align*}
\]

\[
\begin{align*}
&\begin{array}{|c|c|}
\hline
\text{STAR PRL 97 (2006) 162301} & \Delta \phi \\
\hline
\end{array}
\end{align*}
\]
Away-side di-hadron fragmentation

• Study medium-induced modification of fragmentation function due to energy loss
• Without full jet reconstruction, parton energy not measurable
• \(z \) not measured (\(z = \frac{p_{\text{hadron}}}{p_{\text{parton}}} \))
• \(z_T = \frac{p_{T,\text{assoc}}}{p_{T,\text{trig}}} \)

\[
D^{h_1 h_2}(z_T, p_T^{\text{trig}}) = p_T^{\text{trig}} \frac{d\sigma_{AA}^{h_1 h_2}}{dp_T^{\text{trig}}} \frac{dp_T}{d\sigma_{AA}^{h_1}} \frac{dp_T^{\text{trig}}}{d\sigma_{AA}^{h_2}}
\]

\[
I_{AA} = \frac{D_{AA}(z_T, p_T^{\text{trig}})}{D_{pp}(z_T, p_T^{\text{trig}})}
\]
Away-side di-hadron fragmentation

- Study medium-induced modification of fragmentation function due to energy loss
- Without full jet reconstruction, parton energy not measurable
 - \(z = \frac{p_{\text{hadron}}}{p_{\text{parton}}} \)
 - \(z_T = \frac{p_{T,\text{assoc}}}{p_{T,\text{trig}}} \)
- Inconsistent with Parton Quenching Model calculation
- Modified fragmentation model better

\[D^{h_1 h_2}(z_T, p_T^{\text{trig}}) = p_T^{\text{trig}} \frac{d\sigma_{AA}^{h_1 h_2}}{dp_T^{\text{trig}}} \frac{dp_T}{d\sigma_{AA}^{h_1}} \]

\[I_{AA} = \frac{D_{AA}(z_T, p_T^{\text{trig}})}{D_{pp}(z_T, p_T^{\text{trig}})} \]
Away-side di-hadron fragmentation

6 < p_T^{trig} < 10 GeV

\[0.3 < z_T = p_T^{assoc}/p_T^{trig} < 1 \]

Denser medium in central Au+Au than central Cu+Cu
Similar medium for similar N_{part}

Vacuum fragmentation after parton E_{loss} in the medium

O. Catu QM2008

Inconsistent with Parton Quenching Model calculation

Modified fragmentation model better
Two particles are better than one

Compare fits to R_{AA} and I_{AA}

- Minima of data in same place
- Sharper for di-hadrons

$q_0\tau_0 \sim \hat{q} = 2.8 \pm 0.3 \text{ GeV}^2/\text{fm}$
Two particles are better than one

Compare fits to R_{AA} and I_{AA}

- Minima of data in same place
- Sharper for di-hadrons

$q_0 \tau_0 \sim \hat{q} = 2.8 \pm 0.3 \text{ GeV}^2/\text{fm}$

Parton production points in transverse plane

- Surface bias effectively leads to saturation of R_{AA} with density

minimize bias: di-hadron correlations full jets

Helen Caines - Yale - Nov 2008 - Oxford/RAL
Path length dependencies

Non-central events have “elliptic” overlap geometries

Measurements w.r.t reaction plane angle:

Change path length
Keep everything else same

Isolate effects due to path length
Path length effect on di-hadron correlation

\[\text{Au+Au } \sqrt{s_{NN}} = 200 \text{GeV, Cent=30-40\%, } 1 < p_{T,\text{asso}} < 2 \text{ GeV/c, } 2 < p_{T,\text{trig}} < 3 \text{ GeV/c} \]

- In-plane \(\phi_t - \Psi_{RP} = 0 \)

- Near side peak unchanged
- Shoulder peaks emerge as \(\phi_t - \Psi \) increases but are at fixed \(\Delta \phi \)
- Head peak (di-jet remnant) decreases as \(\phi_t - \Psi_{RP} \) increases

B. Cole QM2008
Centrality and path length effects

Au+Au 200 GeV

STAR Preliminary

Away-side RMS

0-5%

20-60%

\[v_2 \text{ sys. error} \]

\[v_2^{\{RP\}} \]

\[v_2^{\{4\}} \]

\[dAu \]

\[RMS = \sqrt{\frac{\sum_{i}(\bar{\phi}_i - \bar{\phi})^2 y_i}{\sum_i y_i}} \]

A. Feng QM2008

\[3 < p_T^{\text{trig}} < 4 \text{ GeV/c}, 1.0 < p_T^{\text{asso}} < 1.5 \text{ GeV/c} \]

In-plane:

20-60% \sim d+Au

0-5% > d+Au

Out-of-plane:

20-60% \sim 0-5%

Au+Au > d+Au
Centrality and path length effects

Away-side RMS

\[\text{Au+Au 200 GeV} \]

\[\text{STAR Preliminary} \]

- 20-60%
- Top 5%

\[v_2 \text{ sys. error} \]

\[v_2^{\{\text{RP}\}} \]

\[3 < p_T^{\text{trig}} < 4 \text{ GeV/c}, \ 1.0 < p_T^{\text{asso}} < 1.5 \text{ GeV/c} \]

In-plane:
- 20-60% ~ d+Au
- 0-5% > d+Au

Out-of-plane:
- 20-60% ~ 0-5%
- \[\text{Au+Au} > \text{d+Au} \]

Away-side features reveal path length effects

A. Feng QM2008
Deflected jets or conical emission?

Distinguish between models using 3-particle correlations.
Deflected jets or conical emission?

Distinguish between models using 3-particle correlations

Deflected jets

Conical Emission

Deflected jets

Conical Emission

Medium

near

away

Medium

near

away

STAR Preliminary
Deflected jets or conical emission?

Deflected jets

Conical Emission

STAR Preliminary

3 < p_{T\text{trigger}} < 4 GeV/c, 1 < p_{T\text{assoc}} < 2 GeV/c

Helen Caines - Yale - Nov 2008 - Oxford/RAL
Deflected jets or conical emission?

Deflected jets:

Conical Emission:

\[\frac{(\Delta \phi_1 - \Delta \phi_2)}{2} \]

\[d+Au \]

\[Au+Au \, 0-12\% \]

\[\frac{(\Delta \phi_1 - \Delta \phi_2)}{2} \]

STAR Preliminary

3 < p_{\text{Trig}} < 4 \text{ GeV/c}, 1 < p_{\text{assoc}} < 2 \text{ GeV/c}
Au+Au data consistent with Conical emission

\[\frac{(\Delta \phi_1 - \Delta \phi_2)}{2} \]

\[\frac{(\Delta \phi_1 - \Delta \phi_2)}{2} \]

STAR Preliminary

Au+Au 0-12%

Conical Emission

3 < p_{\text{Trig}} < 4 \text{ GeV/c}, 1 < p_{\text{assoc}} < 2 \text{ GeV/c}

Au+Au data consistent with Conical emission
Possible causes of conical emission

Mach Cone

Similar to jet creating sonic boom in air.

Energy radiated from parton deposited in collective hydrodynamic modes.

- Mach angle depends on C_s
 - T dependent

\[
\frac{C_s}{v_{\text{parton}}} = \cos(\theta_M)
\]

- Angle independent of p_T^{assoc}
Possible causes of conical emission

Mach Cone

Similar to jet creating sonic boom in air.

Energy radiated from parton deposited in collective hydrodynamic modes.

- Mach angle depends on C_s
 - T dependent

\[
\frac{C_s}{v_{\text{parton}}} = \cos(\theta_M)
\]

- Angle independent of $p_{T\text{assoc}}$

Čerenkov Gluon Radiation

Gluons radiated by superluminal parton.

\[
\frac{c_n}{v_{\text{parton}}} = \cos(\theta_c)
\]

\[
= \frac{c}{n(p)v_{\text{parton}}}
\]

\[
\approx \frac{1}{n(p)}
\]

Angle dependent on $p_{T\text{assoc}}$
Mach cone or Čerenkov gluons?

Angle predictions:

- **Mach-cone:**

 Angle independent of associated p_T

Čerenkov gluon radiation:

Angle decreases with associated p_T

![Diagram showing angle predictions and Čerenkov gluon radiation with data points and graphs.](image)
Mach cone or Čerenkov gluons?

Angle predictions:
- **Mach-cone:**
 Angle independent of associated p_T

Čerenkov gluon radiation:
Angle decreases with associated p_T

![Graph showing angle predictions](image-url)

Au+Au 0-12%

$\Delta \phi = (\Delta \phi_1 - \Delta \phi_2)/2$

STAR Preliminary

PHENIX 1D analysis

M. McCumber QM2008

J. Ulery QM2006

Concise Summary:
- Mach-cone: Angle independent of p_T
- Čerenkov gluons: Angle decreases with p_T

Helen Caines - Yale - Nov 2008 - Oxford/RAL
Mach cone or Čerenkov gluons?

Angle predictions:

- Mach-cone: ✔
 Angle independent of associated p_T

Čerenkov gluon radiation:

Angle decreases with associated p_T

\[(\Delta \phi_1 - \Delta \phi_2)/2 \]

\[0-20\% \text{ Au+Au} \]

\[2 < p_T^\ell < 3 \text{ GeV/c} \]

\[3 < p_T^\ell < 4 \text{ GeV/c} \]

\[4 < p_T^\ell < 5 \text{ GeV/c} \]

PHENIX 1D analysis

M. McCumber QM2008

J. Ulery QM2006

STAR Preliminary

1.36 ± 0.03
Parton interactions on near side

$\Delta(\phi)$ correlations

![Graph showing $\Delta(\phi)$ correlations for Au+Au central, d+Au central, and p+p interactions.](STAR)
Parton interactions on near side

\[\Delta(\phi) \text{ correlations} \]

\[\Delta(\eta) - \Delta(\phi) \text{ correlations} \]

Long range \(\Delta(\eta) \) correlation
– the “Ridge”
Parton interactions on near side

\[\Delta(\phi) \text{ correlations} \]

\[\Delta(\eta) - \Delta(\phi) \text{ correlations} \]

Long range \(\Delta(\eta) \) correlation – the “Ridge”

Persists out to very large \(\Delta(\eta) > 2 \)
Energy loss of trigger - “The ridge”

$3 < p_T^{(trig)} < 6$ GeV
$2 < p_T^{(assoc)} < p_T^{(trig)}$

- $d+Au$, 40-100%
- $Au+Au$, 0-5%
Energy loss of trigger - “The ridge”

d+Au, 40-100%

Au+Au, 0-5%

Ridge: Increases with N_{part}
Independent of colliding system

$3 < p_T(\text{trig}) < 6 \text{ GeV}$
$2 < p_T(\text{assoc}) < p_T(\text{trig})$
Energy loss of trigger - “The ridge”

Ridge: Increases with N_{part}
Independent of colliding system

Jet: Approx. flat with N_{part}
Independent of colliding system
Energy loss of trigger - “The ridge”

Ridge: Increases with N_{part}
Independent of colliding system

Jet: Approx. flat with N_{part}
Independent of colliding system

Parton interacts with medium (ridge), then vacuum fragments (jet)?
Spectra of ridge and shoulder particles

J. Putschke QM2006

\[\text{slope}_{\text{ridge}} > \text{slope}_{\text{jet}} \approx \text{slope}_{\text{inclusive}} \]
Spectra of ridge and shoulder particles

Preliminary

slope_{ridge} > slope_{jet}
\sim slope_{inclusive}
\geq slope_{shoulder}
Un-triggered pair correlations

Method: measure pair densities $\rho(\eta_1 - \eta_2, \phi_1 - \phi_2)$ for all possible pairs in same and mixed events.
Define correlation measure as:

$$\frac{\rho_{\text{same}} - \rho_{\text{mixed}}}{\sqrt{\rho_{\text{mixed}}}} = \frac{\Delta \rho}{\sqrt{\rho_{\text{ref}}}} \propto \frac{\# \text{correlated pairs}}{\text{particle}}$$

Proton-Proton fit function

M. Daugherty QM2008

Minijet:
Same-side jet-like correlations with no trigger particle

longitudinal fragmentation 1D gaussian
HBT and $e+e-$ 2D exponential
Minijet Peak 2D gaussian
Away-side $-\cos(\phi)$

STAR Preliminary
Un-triggered pair correlations

Au-Au fit function

Use proton-proton fit function + \(\cos(2\phi_\Delta) \) quadrupole term ("flow").
This gives the simplest possible way to describe Au+Au data.
Un-triggered pair correlations

Au-Au fit function
Use proton-proton fit function + $\cos(2\varphi_\Delta)$ quadrupole term (“flow”). This gives the simplest possible way to describe Au+Au data.

Small residual indicates goodness of fit

Fit residual = data - model

STAR Preliminary

84-93%
75-84%
65-75%
55-65%
46-55%
28-38%
19-28%
9-19%
5-9%
0-5%
Evolution of mini-jet with centrality

Same-side peak

83-94%

55-65%

46-55%

0-5%

Little shape change from peripheral to 55% centrality

Large change within ~10% centrality

Smaller change from transition to most central

M. Daugherty QM2008
Evolution of mini-jet with centrality

Same-side peak

83-94%

55-65%

46-55%

0-5%

Little shape change from peripheral to 55% centrality

Large change within ~10% centrality

Smaller change from transition to most central

peak amplitude

200 GeV

62 GeV

peak η width

binary scaling

references

M. Daugherty QM2008
Evolution of mini-jet with centrality

Same-side peak

- **83-94%**
- **55-65%**
- **46-55%**
- **0-5%**

Binary scaling reference followed until sharp transition at $\rho \sim 2.5$

\sim30% of the hadrons in central Au+Au participate in the same-side correlation

peak amplitude

peak η width

$\nu \equiv \frac{\langle N_{bin} \rangle}{\langle N_{part} / 2 \rangle}$

binary scaling references

M. Daugherty QM2008
Jets @ RHIC in Au-Au collisions

STAR preliminary

Clearly visible in central events on E-by-E basis

J. Putschke Hard Probes 2008
Jets @ RHIC in Au-Au collisions

Au+Au 0-20% $p_{t,\text{jet}}^{\text{rec}} \sim 47$ GeV

STAR preliminary

Clearly visible in central events on E-by-E basis

Au+Au 0-20% $p_{t,\text{jet}}^{\text{rec}} \sim 21$ GeV

STAR preliminary

Energies as low as 20 GeV resolvable

J. Putschke Hard Probes 2008
Jet-finding strategies in heavy-ion

Jet energy fraction outside cone

• Unmodified (p+p) jets:
 ~ 80% of energy within R~0.3

• Need to suppress heavy-ion background:
 small jet cones areas
 R~0.3-0.4
 remove underlying event
 \(p_{t,\text{track}}, E_{t,\text{tower}} > 1-2 \text{ GeV} \)

\[R = \sqrt{\Delta \eta^2 + \Delta \phi^2} \]

J. Putschke Hard Probes 2008
Jet-finding strategies in heavy-ion

Jet energy fraction outside cone

- Unmodified (p+p) jets:
 ~ 80% of energy within R~0.3

- Need to suppress heavy-ion background:
 small jet cones areas
 R~0.3-0.4
 remove underlying event
 $p_{t,\text{track}}, E_{t,\text{tower}} > 1-2 \text{ GeV}$

Estimate background E-by-E by sampling Out-of-Cone area:

Out-of-Cone area:
used to estimate mean background energy and “mean background FF function”

Caveat: Precision depends on acceptance, event-by-event fluctuations and elliptic flow (small effect for central heavy-ion collisions) …
Jet spectrum in Au+Au collisions

LOCone
- $R_c=0.4$, $p_t^{\text{Seed}}>4.6$ GeV
- $p_t^{\text{cut}}>1$ GeV

MB-Trig: Good agreement with N_{bin} scaled p+p collisions

HT-Trig: Large trigger bias how far up does it persist? (in p+p at least to 30 GeV)

Relative normalization systematic uncertainty: ~50%.

Further statistics of MB is needed to assess the bias in HT Trigger.

First reconstructed jets in central heavy ion collisions.

black points: p+p mid-cone corrected to particle level (scaled by N_{bin})

blue solid points: Au+Au minbias corrected for p_t^{cut} and eff. using Pythia

red open points: Au+Au HT trigger not corrected for p_t^{cut} and eff. using Pythia

S. Salur Hard Probes 2008
Modification of fragmentation function

- MLLA: good description of vacuum fragmentation (basis of PYTHIA)
- Introduce medium effects at parton splitting *Borghini and Wiedemann, hep-ph/0506218*

Jet quenching

Jet quenching \Rightarrow fragmentation should be strongly modified at $p_{T_{\text{hadron}}} \sim 1-5 \text{ GeV}$

Can we measure this at RHIC?
RHIC “Summary”

We create a strongly coupled medium ⇒ sQGP

• not the asymptotically plasma of “free” quarks and gluons as expected - high p_T partons interact very strongly with it
• It flows like a (nearly) perfect fluid with quark degrees of freedom and a viscosity to entropy density ratio lower than any other known fluid

We are past the discovery stage ⇒ towards the quantitative

• i.e. η/s, transport coefficients
• First full jet reconstruction in heavy-ion collisions - probing medium
• How medium varies as a function of collision energy/centrality/species
• New phenomena (e.g. ridge) challenge our understanding
• much remains to be done: EOS, initial conditions (ultimately needs EIC)

Next steps

• Ongoing upgrades to STAR and PHENIX
 ▸ Vertex detectors, increased coverage and PID, improved triggering capabilities ⇒ rare probes, heavy flavor, γ-jet, ...
• Electron Beam Ion Source (EBIS) to extend ranges of species (U+U)
• RHIC-II: increase luminosity by factor 5 using stochastic cooling
The Next Energy Frontier: LHC

A unique opportunity to investigate “QGP” at unparalleled high \sqrt{s}

Will this too create a strongly-coupled fluid?

![Graph showing ε/T^4 vs. T (MeV) for RHIC, SPS, LHC at 0, 2, 2+1, and 3 flavors.]

Targeted Studies: ATLAS

Targeted Studies: CMS

Dedicated Experiment: ALICE
Some possible explanations of the ridge

Recombination between thermal and shower partons at intermediate p_T

QCD bremsstrahlung radiation boosted by transverse flow

E. Shuryak, hep-ph:0706.3531

In medium radiation and longitudinal flow push

Broadening of quenched jets in turbulent color fields

Momentum Kick Model

C.Y. Wong hep-ph:0712.3282

All qualitatively consistent with the features of the ridge
p_T systematics of di-hadron correlations

Increase p_T^{Trigger}

Increase p_T^{Assoc}

PHENIX: arXiv:0801.4545
- Au+Au 0-20 %
- p+p
p_T systematics of di-hadron correlations

Increase p_T^{Trigger}

Increase p_T^{Assoc}

Away-side peak reemerges
Shoulder emerges

PHENIX: arXiv:0801.4545
- Au+Au 0-20 %
- p+p

$Y_{\text{jet, ind}} = \frac{1}{N} \frac{dN^{a b}}{d\Delta \phi}$
p_T systematics of di-hadron correlations

Increase p_T Trigger

Increase p_T Assoc

\[Y_{\text{jet, ind}} = \frac{1}{N} \frac{dN}{d\Delta\phi} \]

PHENIX: arXiv:0801.4545

- Red: Au+Au 0-20 %
- Blue: p+p

Au+Au yield increases (why later ⇒ ridge)

Helen Caines - Yale - Nov 2008 - Oxford/RAL
p_T systematics of di-hadron correlations

Increase p_T Trigger

Increase p_T Assoc

Shoulder structure remains but gets smaller and smaller

PHENIX: arXiv:0801.4545

- Au+Au 0-20 %
- p+p

Helen Caines - Yale - Nov 2008 - Oxford/RAL

p_T = jet_ind Y \frac{d^2N_{ab}}{d\Delta \phi} (1/N)
High p_T triggered away side RMS width

$Au+Au\sqrt{s_{NN}} = 200\, \text{GeV}$

Away side RMS width ($|\Delta\phi-\pi| < 1.0\, \text{rad}$)

Trigger $\pi^0 p_T = 7-9\, \text{GeV}$

PHENIX preliminary

- 0-20%
- 20-40%
- 40-60%
- 60-93%

RMS Width - centrality independent
High p_T triggered away side RMS width

Au+Au $\sqrt{s_{NN}} = 200$ GeV
Away side RMS width ($|\Delta\phi-\pi| < 1.0$ rad)
Trigger π^0 $p_T = 7$-9 GeV

PHENIX preliminary
- 0-20%
- 20-40%
- 40-60%
- 60-93%

$p+p$ π^0-h:
- $p_T^{\text{trig}} = 6.5$-8 GeV/c
- $p_T^{\text{assoc}} = 1.4$-5 GeV/c
- RMS = 0.350 ± 0.03

PHENIX:
Phys Rev D 74 072002

RMS Width - centrality independent
Consistent with $p+p$ data

A. Adare QM2008
High p_T triggered away side RMS width

$Au+Au \sqrt{s_{NN}} = 200 \text{ GeV}$

Away side RMS width ($|\Delta\phi-\pi| < 1.0 \text{ rad}$)

Trigger π^0 $p_T = 7$-9 GeV

$RMS = 0.350 \pm 0.03$

$p+p \pi^0$-h:

$p_T^{\text{trig}} = 6.5$-8 GeV/c

$p_T^{\text{assoc}} = 1.4$-5 GeV/c

RMS Width - centrality independent

Consistent with p+p data

Vacuum fragmentation?

PHENIX:

Phys Rev D 74 072002
Composition of ridge and shoulders

ridge ratio ~ inclusive ratio > jet ratio
Composition of ridge and shoulders

Ridge ratio ~ inclusive ratio > jet ratio

Shoulder ratio ~ inclusive ratio > jet ratio
Composition of ridge and shoulders

Ridge ratio ~ inclusive ratio > jet ratio

Shoulder ratio ~ inclusive ratio > jet ratio

Ridge and Shoulder similar properties

NOT vacuum fragmentation

Energy lost by jet partons seems to be re-distributed into the medium and freezes out in similar fashion
\[C(\Delta \phi) \equiv \frac{Y_{\text{same}}(\Delta \phi)}{Y_{\text{mixed}}(\Delta \phi)} \times \int \frac{Y_{\text{mixed}}(\Delta \phi) d\phi}{Y_{\text{same}}(\Delta \phi) d\phi} \]

\[C(\Delta \phi) \equiv b_0 \left[1 + 2v_{2}^{\text{assoc}} \langle v_{2}^{\text{trig}} \rangle \cos(2\Delta \phi) \right] + J(\Delta \phi) \]
\[
\frac{c_s}{v_{\text{parton}}} = \cos(\theta_M)
\]

\[
c_s^2 = \frac{\partial p}{\partial \varepsilon}; \quad v_{\text{parton}} \approx c
\]

- **Mach angle depends on speed of sound in medium**
 - \(T\) dependent
- **Angle independent of associated \(p_T\)**
\[\frac{c_s}{v_{\text{parton}}} = \cos(\theta_M) \]

\[c_s^2 = \frac{\partial p}{\partial \varepsilon}; \quad v_{\text{parton}} \approx c \]

- Mach angle depends on speed of sound in medium
 - \(T \) dependent
- Angle independent of associated \(p_T \).
\[
\frac{c_s}{v_{\text{parton}}} = \cos(\theta_M)
\]

\[
c_s^2 = \frac{\partial p}{\partial \varepsilon}; \quad v_{\text{parton}} \approx c
\]

- Mach angle depends on speed of sound in medium
 - \(T\) dependent
- Angle independent of associated \(p_T\)
\[
\frac{c_s}{\nu_{\text{parton}}} = \cos(\theta_M)
\]

\[
c_s^2 = \frac{\partial p}{\partial \epsilon} ; \quad \nu_{\text{parton}} \approx c
\]

- Mach angle depends on speed of sound in medium
 - T dependent
- Angle independent of associated p_T.

Mikherjee, Mustafa, Ray

\[\frac{c_s}{v_{\text{parton}}} = \cos(\theta_M) \]

\[c_s^2 = \frac{\partial p}{\partial \varepsilon}; \quad v_{\text{parton}} \approx c \]

- Mach angle depends on speed of sound in medium
 - \(T \) dependent
- Angle independent of associated \(p_T \).

Mikherjee, Mustafa, Ray

\[
\frac{c_n}{v_{\text{parton}}} = \cos(\theta_c) = \frac{c}{n(p)v_{\text{parton}}} \approx \frac{1}{n(p)}
\]
\[\langle \xi \rangle \] for strange hadrons

- QCD predicts a \(\langle \xi \rangle \) p mass ordering

We observe an inversion of \(K^0_s \) and \(\Lambda \)

- Similar observation from BABAR for K and p
Observation of di-jets: punch through
Observation of di-jets: punch through

Select di-jets events:
Require T1 and T2 b-to-b

- **T1**: $p_T > 5\text{GeV}/c$
- **T2**: $p_T > 4\text{GeV}/c$
- **A1**: $p_T > 1.5\text{GeV}/c$
Observation of di-jets: punch through

Select di-jets events: Require T1 and T2 b-to-b

$T1: \ p_T > 5\text{GeV/c} \quad T2: \ p_T > 4\text{GeV/c}$

A1: $p_T > 1.5\text{GeV/c}$

What happens to away-side hump and near-side ridge if we trigger on di-jets?
Correlation between primary trigger (T1) and “away-jet-axis trigger” (T2).

- Require that the 2 highest p_T particles are back-to-back in ϕ.

$T_1: p_T > 5 \text{ GeV}/c$

$T_2: p_T > 4 \text{ GeV}/c$
• Hope to shift distribution of hard scattering towards center of medium. Near-side parton travels through more medium.

Create path lengths comparable in dense medium.

However not always from center could be tangential.
Di-jets are suppressed

Once selected:

• No Away-side suppression
 \(\text{Au+Au} \sim \text{d+Au} \)

• No Away-side shape modification
Di-jets are suppressed

Once selected:

- No Away-side suppression
 \(Au+Au \sim d+Au \)

- No Away-side shape modification

- No Ridge
Di-jets are suppressed

Once selected:

- No Away-side suppression
 \(\text{Au+Au} \sim \text{d+Au} \)

- No Away-side shape modification

- No Ridge

Di-Jets don't interact with medium. Tangential jets or punch through without interaction?