Jet Reconstruction -Understanding the backgrounds and biases is key

Helen Caines - Yale University

RHIC Paradigms Austin, Tx April 14-17 2010

Outline

• p-p

Underlying event Initial and final state effects Fragmentation

• d-Au Cold nuclear matter effects

• Au-Au

Understanding the background Probing jet modifications

Jet definitions ⇔ Jet algorithms

The construction of a jet is unavoidably ambiguous

- Which particles get put together into a common jet?
- How do you combine their momenta?

Jet definitions \Leftrightarrow Jet algorithms

The construction of a jet is unavoidably ambiguous

- Which particles get put together into a common jet?
- How do you combine their momenta?

Jet Algorithm $\{p_i\} \rightarrow \{j_k\}$ individual 4-mtm jets

• Jet algorithms: radius parameter

infra-red safe

- jet unaffected by soft gluon emission collinear safe

jet unaffected by parton splitting

Jet finders used at RHIC

- **k**_T and anti-k_T recombination algorithms from FastJet Cacciari, Salam and Soyez, JHEP0804 (2008) 005, arXiv:0802.1188
- resolution parameter R: 0.2 0.7
- background subtraction:

$$p_{T,meas}$$
 (Jet) ~ $p_{T,true}$ (Jet) + $\rho A \pm \sigma \sqrt{A}$

A: active jet area, ρ : median of p_T/A distribution

 Gaussian filter with σ=0.3 (Y.S.Lai, B.A.Cole, arXiv: 0806.1499) core of jet has higher weight: optimized to suppress background ideal for limited-acceptance detector seedles 'cone like' but not infrared or collinear safe

• Jet-by-jet fake rejection by Gaussian-filtered (σ =0.1) p_{τ}^{2} sum > cut

Y.S.Lai (PHENIX), arXiv: 0907.4725

shouldn't reject quenched jets (PYQUENCH simulation)

Jets in p-p at RHIC

- Jet cross-section in p+p is well described by NLO pQCD calculations over 7 orders of magnitude.
- Excellent description when included in world data

Jets in p-p at RHIC

- Jet cross-section in p+p is well described by NLO pQCD calculations over 7 orders of magnitude.
- Excellent description when included in world data
- What you ask for is what you get

Jets in p-p at RHIC

- Jet cross-section in p+p is well described by NLO pQCD calculations over 7 orders of magnitude.
- Excellent description when included in world data
- What you ask for is what you get

Seem to have a well calibrated probe

Measuring the underlying event

leading : Most basic jet cut, one jet in our acceptance

back-to-back : Sub-set of leading jet collection. Require $|\Delta \phi| > 150$, $p_{TAway}/p_{TLead} > 0.7$ Suppresses hard initial and final state radiation.

TransMin : Sensitive to beam-beam remnants and soft multiple parton interactions. - region 90^o to jet with least Σp_T

TransMax : Enhanced probability of containing hard initial and/ or final state radiation component. - region 90^o to jet with least Σp_T

Measuring the underlying event

leading : Most basic jet cut, one jet in our acceptance

back-to-back : Sub-set of leading jet collection. Require $|\Delta \phi| > 150$, $p_{TAway}/p_{TLead} > 0.7$ Suppresses hard initial and final state radiation.

TransMin : Sensitive to beam-beam remnants and soft multiple parton interactions. - region 90^o to jet with least Σp_T

TransMax : Enhanced probability of containing hard initial and/ or final state radiation component. - region 90^o to jet with least Σp_T

Compare TransMin and TransMax data from leading and back-to-back jet samples →

Information about large angle initial/final state radiation.

CDF \sqrt{s} =1.96 TeV

 leading TransMax > backto-back TransMax
 Significant initial/final state radiation at large angles.

CDF \sqrt{s} =1.96 TeV

 leading TransMax > backto-back TransMax
 Significant initial/final state radiation at large angles.

STAR √s=200 GeV leading TransMax ~ back-to-back TransMax

Small initial/final state radiation at large angles.

CDF \sqrt{s} =1.96 TeV

- leading TransMax > backto-back TransMax
 Significant initial/final state radiation at large angles.
- STAR √s=200 GeV
 leading TransMax ~
 back-to-back TransMax

Small initial/final state radiation at large angles.

TransMax > TransMin

Data not corrected to particle level.

CDF \sqrt{s} =1.96 TeV

 leading TransMax > backto-back TransMax
 Significant initial/final state radiation at large angles.

STAR \sqrt{s} =200 GeV

leading TransMax ~
 back-to-back TransMax

Small initial/final state radiation at large angles.

TransMax > TransMin

Poisson distribution with average $dN_{ch}/d\eta d\phi = 0.36$

UE barely there in p-p

Fragmentation functions for charged hadrons

- Z_{max} ~ 0.81
- Electrons are rejected

• FF scaled by successive factors of 10

Reasonable agreement between data and PYTHIA

• Similar good agreement has been shown by STAR using R=0.4 and 0.7

NLO corrections small or accounted for in PYTHIA

Strange hadron FF

Data presented at detector level

A. Timmins SQM2009

- Errors estimated from averaging results from k_T , anti- k_T and SISCone
- V0 p_T > 1 GeV/c artificial cut in distribution

Strange hadron FF

Data presented at detector level

A. Timmins SQM2009

- Errors estimated from averaging results from k_T , anti- k_T and SISCone
- V0 p_T > 1 GeV/c artificial cut in distribution
- PYTHIA = PYTHIA+GEANT

Description of K^{0}_{s} seems better than for Λ - also true for min-bias p_{T} distributions

CDF Phys. Rev. D 9 (2009)

• At ~80 GeV/c data 3 orders magnitude above PYTHIA

Helen Caines – RHIC Paradigms , Austin - 2010

Friday, April 16, 2010

CDF Phys. Rev. D 9 (2009), Cacciari et al. arXiv:1003.3433

- At ~80 GeV/c data 3 orders magnitude above PYTHIA
- Jet cross-section well described

CDF Phys. Rev. D 9 (2009), Cacciari et al. arXiv:1003.3433

- At ~80 GeV/c data 3 orders magnitude above PYTHIA
- Jet cross-section well described Cross-sections are equal!
- Partons appear to violate factorization of fragmentation collinear splitting turns off, single particles produced!

- At ~80 GeV/c data 3 orders magnitude above PYTHIA
- Jet cross-section well described Cross-sections are equal!
- Partons appear to violate factorization of fragmentation collinear splitting turns off, single particles produced!
- Seems in contradiction to di-jet FF measurement

Either Nobel Prize winning or wrong! to be checked by LHC

CNM are small at RHIC

d-Au - Additional smearing due to parton interaction with CNM

A-A - now things get really complicated

One can at least see some jets if you plot summed p_T

Now have to deal with the background

Au-Au - the underlying event

There are no short cuts

Anti-quenching biases are hiding everywhere!

• triggering on high p_T particles \Rightarrow bias towards non-interacting jets

Closer look at the fluctuations

Schematically Au-Au jet spectrum:

$$\frac{d\sigma_{AA}}{dp_T} = \frac{d\sigma_{pp}}{dp_T} \otimes F(A, p_T)$$

 $F(A,p_T)$ - investigation in data via jets with ρ_T - $\rho A < 0$ - assume symmetric distribution (i.e. Gaussian a la FastJet)

 $F(A, p_T) = Poisson(M(A)) \otimes \Gamma(M(A), \langle p_T \rangle$

Closer look at the fluctuations

Thermal simulation compared to scrambling event

- Thermal spectrum is an approximation
 - different fit ranges give different T
- Need a 2nd approach to compare to
- Try scrambling real events - break all physical correlations

- Scrambled softer than thermal
 - naively expect harder as jet particles still there
 - need to implement tracking efficiency in thermal toy
- Per trigger jet normalized 90⁰ spectrum ~ Per event Min-bias spectrum

Significant rate for two (or more) hard scatterings in Au-Au event

Fake jet rate in a Au-Au event

Definition: "Fake" jet - signal in excess of background model from random association of uncorrelated soft particles (i.e. not due to hard scattering)

Estimating the "Fake" jet rate:

- Use the real data Au+Au dataset
- Run jet finder
- (Remove leading particle from each found jet if p_T>X GeV/c)
- Randomize azimuth of each charged particle and calorimeter tower
- Re-run jet finder

Fake jet rate in a Au-Au event

Definition: "Fake" jet - signal in excess of background model from random association of uncorrelated soft particles (i.e. not due to hard scattering)

Estimating the "Fake" jet rate:

- Use the real data Au+Au dataset
- Run jet finder
- (Remove leading particle from each found jet if $p_T > X \text{ GeV/c}$)
- Randomize azimuth of each charged particle and calorimeter tower
- Re-run jet finder

A-A Jet spectrum

First measurement of jet cross-section in heavy-ion experiments

Friday, April 16, 2010

A-A Jet spectrum

First measurement of jet cross-section in heavy-ion experiments PHENIX also able to make very impressive measurements

A-A Jet spectrum

First measurement of jet cross-section in heavy-ion experiments

PHENIX also able to make very impressive measurements

Compare to p-p and/or look at fragmentation to learn something

Helen Caines – RHIC Paradigms , Austin - 2010

Friday, April 16, 2010

R_{AA} expectations

If we have succeeded in fully capturing all jet energy

```
Jet R<sub>AA</sub> = 1
Fragmentation function modified
```


R_{AA} expectations

If we have succeeded in fully capturing all jet energy

```
Jet R<sub>AA</sub> = 1
Fragmentation function modified
```

However, we run with fixed (and small) R and may miss some particles/energy flow

```
Jet R<sub>AA</sub> < 1
Fragmentation function potentially
unmodified
```


R_{AA} expectations

If we have succeeded in fully capturing all jet energy

```
Jet R<sub>AA</sub> = 1
Fragmentation function modified
```

However, we run with fixed (and small) R and may miss some particles/energy flow

```
Jet R<sub>AA</sub> < 1
Fragmentation function potentially
unmodified
```

Essential to run and compare with different radii

Jet RAA

• Jet R_{AA} = single hadron R_{AA} - (Gauss filt)

Jet RAA

- Jet $R_{AA} < 1(R=0.4)$
- Jet R_{AA} > single hadron R_{AA} (R=0.4)

Algorithms fail to recover full jet cross-section

Jet RAA

R=0.2 compared to R=0.4 - p-p

- Jets become focussed as p_T increases R=0.2/R=0.4 increases with jet p_T
- PYTHIA (including fragmentation+hadronization) describes the data

R=0.2 compared to R=0.4 - p-p

• Jets become focussed as p_T increases - R=0.2/R=0.4 increases with jet p_T

• PYTHIA (including fragmentation+hadronization) describes the data

NLO fails - Suggests fragmentation and/or hadronization broaden jet

R=0.2 compared to R=0.4 - Au-Au

R=0.2 compared to R=0.4 - Au-Au

Broadening of jet reduces energy contained in fixed R compared to p-p

R=0.2 compared to R=0.4 - Au-Au

Broadening of jet reduces energy contained in fixed R compared to p-p

R=0.2

-0.8

-0.6

-0.4

Red: p-p

-0.2

Blue: Au-Au

0

0.2

0.4

0.6

0.8

R=0.4

Significant broadening of Au-Au jets even within $R=0.2 \rightarrow 0.4$ - related to away-side broadening in di-hadrons?

Comparison to theory

 NLO - less broadening than seen in data N.B. in p-p ratio = 0.6-0.8

Comparison to theory

qPYTHIA - less broadening than seen in data

 NLO - less broadening than seen in data N.B. in p-p ratio = 0.6-0.8

Is broadening mostly hadronization effect?

Di-jet suppression

High tower trigger - single particle with high p_T maximize medium traversed by recoil jet

Compare yield of di-jets in p-p to that Au-Au

Di-jet suppression

High tower trigger - single particle with high p⊤ maximize medium traversed by recoil jet

Compare yield of di-jets in p-p to that Au-Au

Significant suppression of recoil jets - close to single particle R_{AA}

Again indicates broadening

Di-jet suppression

High tower trigger - single particle with high p⊤ maximize medium traversed by recoil jet

Compare yield of di-jets in p-p to that Au-Au

Significant suppression of recoil jets - close to single particle R_{AA}

Again indicates broadening

Large path length results in larger suppression/ broadening

Looking at the broadening - FF

Au-Au: FF(Jet)=FF(Jet+Bkg)-FF(bkg)

Bkg estimated from charged particle spectra out of jets, rescaling to the area with R=0.7

To make jet definition cleaner try finding jet with R=0.4

For FF consider charged particles within R=0.7

Looking at the broadening - FF

Au-Au: FF(Jet)=FF(Jet+Bkg)-FF(bkg)

Bkg estimated from charged particle spectra out of jets, rescaling to the area with R=0.7

To make jet definition cleaner try finding jet with R=0.4

For FF consider charged particles within R=0.7

Background dominates at low p_T - where action is expected

Jet-hadron correlations

High Tower Trigger (HT): tower $0.05x0.05 (\eta x \varphi)$ with Et> 5.4 GeV

 $\begin{array}{l} \Delta \varphi = \varphi_{Jet} - \varphi_{Assoc.} \\ \varphi_{Jet} = jet\text{-axis found} \\ by Anti-k_T, R=0.4, \\ p_{t,cut} > 2 \ GeV \ and \\ p_{t,rec}(jet) > 20 \ GeV \end{array}$

Jet-hadron correlations

High Tower Trigger (HT): tower 0.05x0.05 (ηxφ) with E_t> 5.4 GeV

 $\Delta \phi = \phi_{Jet} - \phi_{Assoc.}$ $\phi_{Jet} = jet\text{-axis found}$ by Anti-k_T, R=0.4, $p_{t,cut} > 2 \text{ GeV and}$ $p_{t,rec}(jet) > 20 \text{ GeV}$

Broadening of recoil-side

Softening of recoil-side

Caveat: "Jet v₂" effects still under investigation

First direct measurement of Modified Fragmentation due to presence of sQGP

Modification of recoil jet

Modification of recoil jet

Friday, April 16, 2010

Modification of recoil jet

Energy outside R=0.4 ~accounts for di-jet suppression

Helen Caines – RHIC Paradigms , Austin - 2010

Friday, April 16, 2010

Summary

- p-p jet reference measurements are well understood we have a calibrated probe
- Cold nuclear matter effects on jets are small (d-Au compared to p-p)
- Once parton escapes medium fragments as in vacuum
- Jets reconstructed in A-A assuming vacuum frag. show same suppression as for single hadrons (Gaussian filter studies)
- Strong evidence of broadening and softening of the jet energy profile (R=0.2/R=0.4, jet-hadron)
- Background subtraction the most serious issue current focus

Results can be explained as due to significant partonic energy loss in the sQGP before fragmentation - numerous details left to be understood