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Evolution of the universe
10-44 sec Quantum Gravity Unification of all 4 

forces 
1032 K

10-35 sec Grand Unification E-M/Weak = Strong 
forces

1027 K

10-35 sec ? Inflation universe exponentially 
expands by 1026

1027 K

2 10-10 sec Electroweak 
unification

E-M = weak force 1015 K

2·10-6 sec Proton-
Antiproton pairs

creation of nucleons 1013 K

6 sec Electron-Positron 
pairs

creation of electrons 6x109 K

3 min Nucleosynthesis light elements formed 109 K
106 yrs Microwave 

Background
recombination - 
transparent to photons

3000 K

109 yrs ? Galaxy formation bulges and halos of 
normal galaxies form

20 K

2



Franklin & Marshall College - April 2009Helen Caines 

Evolution of the universe

The universe gets cooler !

2
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Evolution of the universe

Reheating Matter ?
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Evolution of the universe

Reheating Matter ?

?
Need  temperatures 

around
1.5·1012 K
(200 MeV) 

far hotter than center of 
the sun (~2.107K)

2
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Essential ingredients of matter
electron

nucleus 

nucleons

proton 

neutron

gluons quarks
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Essential ingredients of matter
electron

nucleus 

nucleons

proton 

neutron

gluons quarks

3

hadrons

mesons

baryons

pions, kaons

protons, neutrons
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More about partons
Ordinary matter made
 of up and down quarks 

• Quarks interact by exchanging gluons
• Nucleons are held together by gluons

4
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More about partons
Ordinary matter made
 of up and down quarks 

• Quarks interact by exchanging gluons
• Nucleons are held together by gluons

Free quarks have never been seen - distinctive non-integer charge

4
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Why we don’t see free quarks

quark quark
gluons The size of a nucleus is 1.2A1/3 

fm where A is the mass 
number and a fm is 10-15 m

5
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Why we don’t see free quarks

Compare to gravitational force at Earth’s surface

Quarks exert 16 metric tons of force on each other!

quark quark
gluons The size of a nucleus is 1.2A1/3 

fm where A is the mass 
number and a fm is 10-15 m
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Confinement - QCD

“white” proton

quark

Confinement: fundamental & crucial (but not understood!) feature 
of strong force  - colored objects (quarks) have ∞ energy in normal  
             vacuum
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Strong color field
Force grows with 
separation !!!

Confinement - QCD
Confinement: fundamental & crucial (but not understood!) feature 
of strong force  - colored objects (quarks) have ∞ energy in normal  
             vacuum
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Confinement - QCD

quark-antiquark pair
created from vacuum

Confinement: fundamental & crucial (but not understood!) feature 
of strong force  - colored objects (quarks) have ∞ energy in normal  
             vacuum



Franklin & Marshall College - April 2009Helen Caines 6

Confinement - QCD

“white” proton
(confined quarks)

“white” π0

(confined quarks)

Confinement: fundamental & crucial (but not understood!) feature 
of strong force  - colored objects (quarks) have ∞ energy in normal  
             vacuum
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Confinement - QCD

“white” proton
(confined quarks)

“white” π0

(confined quarks)

Confinement: fundamental & crucial (but not understood!) feature 
of strong force  - colored objects (quarks) have ∞ energy in normal  
             vacuum

To understand the strong force and confinement: Create and 
study a system of deconfined colored quarks and gluons 
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quark

Confinement: feature of strong force
 - colored objects (quarks) 
 have ∞ energy in normal vacuum

Recreating in the laboratory
We try to make a deconfined state of matter

7
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How can we create a deconfined 
state of QCD matter?

quark

Confinement: feature of strong force
 - colored objects (quarks) 
 have ∞ energy in normal vacuum

Recreating in the laboratory
We try to make a deconfined state of matter

Quarks are also confined within 
mesons
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How can we create a deconfined 
state of QCD matter?

quark

Confinement: feature of strong force
 - colored objects (quarks) 
 have ∞ energy in normal vacuum

Recreating in the laboratory
We try to make a deconfined state of matter

Quarks are also confined within 
mesons

by heating or compressing
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How can we create a deconfined 
state of QCD matter?

quark

Confinement: feature of strong force
 - colored objects (quarks) 
 have ∞ energy in normal vacuum

Recreating in the laboratory
We try to make a deconfined state of matter

Quarks are also confined within 
mesons

by heating or compressing

Quark Gluon Plasma
~6x Normal nuclear density

7
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Thermodynamics - phase transitions

8
€ 

T ∝ pT

€ 

ε∝ dET dy ≅ mT dN dy

€ 

S∝ dN dy

ΔS =
L
Tc

Tc
T

S

εc

ε

T

Tc
mixed phase

Phase transition or a crossover?
Signs of a phase transition: 

1st order: discontinuous in entropy at Tc      ➝  Latent heat, a mixed phase

Higher order: discontinuous in higher derivatives of δnS/δTn   ➝ no mixed 
phase - system passed smoothly and uniformly into new state (ferromagnet)

Temperature   ⇔  transverse momentum

Energy density      ⇔   transverse energy

Entropy       ⇔     multiplicity
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“A first-order QCD phase transition that occurred in the 
early universe would lead to a surprisingly rich 
cosmological scenario.”   Ed Witten, Phys. Rev. D (1984)

The order of the phase transition

9
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“A first-order QCD phase transition that occurred in the 
early universe would lead to a surprisingly rich 
cosmological scenario.”   Ed Witten, Phys. Rev. D (1984)

The order of the phase transition

NASA/WMAP

9



Franklin & Marshall College - April 2009Helen Caines 

“A first-order QCD phase transition that occurred in the 
early universe would lead to a surprisingly rich 
cosmological scenario.”   Ed Witten, Phys. Rev. D (1984)

The order of the phase transition

Apparently it did not !
Thus we suspect a smooth cross over or 

a weak first order transition

NASA/WMAP

9
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Plasma ≡ ionized gas which is macroscopically 
neutral & exhibits collective effects
Usually plasmas are e.m., here color forces

QCD phase diagram of hadronic matter
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Plasma ≡ ionized gas which is macroscopically 
neutral & exhibits collective effects
Usually plasmas are e.m., here color forces

QCD phase diagram of hadronic matter
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The phase transition in the laboratory

Chemical freezeout (Tch ≤ Tc): inelastic scattering ceases
Kinetic freeze-out (Tfo ≤ Tch): elastic scattering ceases
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RHIC @ Brookhaven National Lab

RHIC - Relativistic Heavy Ion Collider
3.8 km accelerator that can be seen from space

12
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Unusual facts about RHIC

13

• RHIC's beam travels at 99.995% the speed of light (186,000   
miles per second). 

• RHIC’s two rings consist of 1740 super-conducting magnets 
each cooled by liquid helium to -269oC 

• RHIC contains seven tons of helium
• enough to fill all the balloons in Macy's Thanksgiving Day 
Parades for the next 100 years

• The refrigerator to cool the helium needs a power of 15 MW (as 
much as 15000 homes! we shut down over the summer) 

• Over 20 years less than one gram of gold is used in the beam. 

• At top energy: stored beam energy is 200kJ per ring 

• energy 2000 people get drinking a single drop of beer each 



RHIC BRAHMSPHOBOS
PHENIX

STAR

AGS

TANDEMS
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1 km

v = 0.99995⋅c

RHIC - the experiments

counter-rotating 
beams of ions 
from p to Au @ 
√sNN=5-500 GeV
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1 km

v = 0.99995⋅c

RHIC - the experiments

counter-rotating 
beams of ions 
from p to Au @ 
√sNN=5-500 GeV
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Geometry of a heavy-ion collision

Number of participants (Npart): number of incoming nucleons 
(participants) in the overlap region
Number of binary collisions (Nbin): number of equivalent 
inelastic nucleon-nucleon collisions 

Reaction 
plane

x

z

y

Non-central 
collision

“peripheral” collision (b ~ bmax)
“central”  collision (b ~ 0)

Nbin ≥ Npart
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Peripheral Collision

Color ⇒ Energy loss in TPC gas

A peripheral Au-Au collision
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• Only charged particles shown 

• Neutrals don’t ionise the TPC’s 
gas so are not “seen” by this 
detector.

39.4 TeV in central Au-Au collision

>5000 hadrons and leptons
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• Only charged particles shown 

• Neutrals don’t ionise the TPC’s 
gas so are not “seen” by this 
detector.

39.4 TeV in central Au-Au collision

26 TeV is removed 
from colliding beams. 

>5000 hadrons and leptons
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Central Au+Au Collision:  
                 26 TeV ~ 6 µJoule

The energy is contained in one collision

18
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Central Au+Au Collision:  
                 26 TeV ~ 6 µJoule

The energy is contained in one collision

Sensitivity of human ear:
       10-11 erg = 10-18 Joule = 10-12 µJoule

A Loud “Bang” if E ⇒ Sound

18
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Central Au+Au Collision:  
                 26 TeV ~ 6 µJoule

The energy is contained in one collision

Sensitivity of human ear:
       10-11 erg = 10-18 Joule = 10-12 µJoule

A Loud “Bang” if E ⇒ Sound

Most goes into particle creation

18



Franklin & Marshall College - April 2009Helen Caines 

Energy density in central Au-Au collisions

The PHENIX
 Calorimeter

• use calorimeters to measure 
total energy

19
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Energy density in central Au-Au collisions

πR2

Bjorken-Formula for Energy Density:

Time it takes to 
thermalize system 
(t0 ~  1 fm/c)

R~6.5 fm

• use calorimeters to measure 
total energy
• estimate volume of  collision

19
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Energy density in central Au-Au collisions

εBJ ≈ 5.0 GeV/fm3 
      ~30 times normal nuclear density
      ~ 5 times > εcritical  (lattice QCD)

πR2

Bjorken-Formula for Energy Density:

Time it takes to 
thermalize system 
(t0 ~  1 fm/c)

R~6.5 fm

• use calorimeters to measure 
total energy
• estimate volume of  collision

19
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5 GeV/fm3. Is that a lot?
In a year, the U.S. uses ~100 quadrillion BTUs of energy 
(1 BTU = 1 burnt match):

20
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5 GeV/fm3. Is that a lot?
In a year, the U.S. uses ~100 quadrillion BTUs of energy 
(1 BTU = 1 burnt match):

At 5 GeV/fm3, this would fit in a volume of:

Or, in other words, in a box of the following dimensions:

20
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A human hair 

21
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What is the temperature of the medium?
• Statistical Thermal Models:

– Assume a system that is thermally (constant Tch) and 
chemically (constant ni) equilibrated

– System composed of non-interacting hadrons and 
resonances

– Obey conservation laws: Baryon Number, Strangeness, 
Isospin

• Given Tch and µ 's (+ system size), ni's can be 
calculated in a grand canonical ensemble



• Assume all particles described 
by same temperature T and µB 

• one ratio (e.g.,  p / p ) 
determines µ / T :

• A second ratio (e.g., K / π ) 
provides T → µ

• Then all other hadronic ratios 
(and yields) defined

dni ∼ e−(E−µB)/T d3p

p̄

p
=

e−(E−µB)/T

e−(E−µB)/T
= e−2µB/T

Franklin & Marshall College - April 2009Helen Caines 

Fitting the particle ratios

23

Number of particles of a given species related to temperature

K

π
=

e−EK/T

e−Eπ/T
= e−(EK−Eπ)/T



• Assume all particles described 
by same temperature T and µB 

• one ratio (e.g.,  p / p ) 
determines µ / T :

• A second ratio (e.g., K / π ) 
provides T → µ

• Then all other hadronic ratios 
(and yields) defined

A. Adronic et al., NPA772:167 dni ∼ e−(E−µB)/T d3p

p̄

p
=

e−(E−µB)/T

e−(E−µB)/T
= e−2µB/T
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Fitting the particle ratios

23

Number of particles of a given species related to temperature

K

π
=

e−EK/T

e−Eπ/T
= e−(EK−Eπ)/T  T ~ 160 MeV, µb ~ 20 MeV

Temperature needed to 
make QGP
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Where RHIC sits on the phase diagram
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Blackbody radiation
Planck distribution
describes intensity
as a function of the
wavelength of the
emitted radiation
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Blackbody radiation
Planck distribution
describes intensity
as a function of the
wavelength of the
emitted radiation

“Blackbody” radiation 
is the spectrum of 
radiation emitted by an 
object at temperature T

As T increases curve changes
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Blackbody radiation
Planck distribution
describes intensity
as a function of the
wavelength of the
emitted radiation

“Blackbody” radiation 
is the spectrum of 
radiation emitted by an 
object at temperature T

1/Wavelength ∝ Frequency ∝ E ∝ p

As T increases curve changes
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3× 1.4× 10−23
× 1.6× 10−19
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Systematic Errors not shown

Phobos Preliminary

Determining the temperature
From transverse 

momentum distribution 
deduce temperature  

~120 MeV

∼ 9× 1011K
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Systematic Errors not shown

Phobos Preliminary

Determining the temperature
From transverse 

momentum distribution 
deduce temperature  

~120 MeV

Again temperature needed 
to create QGP∼ 9× 1011K
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Strong collective radial expansion

mT1/
m

T
 d

N
/d

m
T

light

heavyT

purely thermal
source
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Strong collective radial expansion

• Different spectral shapes for 
particles of differing mass
→ strong collective radial flow

mT1/
m

T
 d

N
/d

m
T

light

heavyT

purely thermal
source

explosive
source

T,β

mT1/
m

T
 d

N
/d

m
T light

heavy

mT = (pT
2 + m2)½
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Strong collective radial expansion

• Different spectral shapes for 
particles of differing mass
→ strong collective radial flow

mT1/
m

T
 d

N
/d

m
T

light

heavyT

purely thermal
source

explosive
source

T,β

mT1/
m

T
 d

N
/d

m
T light

heavy

mT = (pT
2 + m2)½

Good agreement with hydrodynamic
prediction for soft EOS (QGP+HG)

     Tfo~ 100 MeV
〈 βT 〉 ~ 0.55 c



φ

pT
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Anisotropic/Elliptic flow

Almond shape overlap 
region in coordinate space

Anisotropy in 
momentum 
space

Interactions/ 
Rescattering

dN/dφ ~ 1+2 v2(pT)cos(2φ) + ….     φ=atan(py/px)            v2 =〈cos2φ〉

v2:  2nd harmonic Fourier coefficient in dN/dφ with respect to the reaction plane
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pT
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Anisotropic/Elliptic flow

Almond shape overlap 
region in coordinate space

Anisotropy in 
momentum 
space

Interactions/ 
Rescattering

dN/dφ ~ 1+2 v2(pT)cos(2φ) + ….     φ=atan(py/px)            v2 =〈cos2φ〉

v2:  2nd harmonic Fourier coefficient in dN/dφ with respect to the reaction plane

Time –M. Gehm, S. Granade, S. Hemmer, K, O’Hara, J. 
Thomas - Science 298 2179 (2002) 

2000µs1000µs100µs 600µs
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Anisotropic/Elliptic flow

Almond shape overlap 
region in coordinate space

Anisotropy in 
momentum 
space

Interactions/ 
RescatteringElliptic flow observable sensitive to early evolution of system

Mechanism is self-quenching

Large v2 is an indication of early thermalization

Time –M. Gehm, S. Granade, S. Hemmer, K, O’Hara, J. 
Thomas - Science 298 2179 (2002) 

2000µs1000µs100µs 600µs
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Elliptic flow

29

Factor 3:1 peak to valley 

Distribution of particles with respect to event plane, φ−ψ, pt>2 GeV; STAR PRL 90 (2003) 032301

• Very strong elliptic flow →
early equilibration
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Elliptic flow

29

Factor 3:1 peak to valley 

Distribution of particles with respect to event plane, φ−ψ, pt>2 GeV; STAR PRL 90 (2003) 032301

• Pure hydrodynamical 
models including QGP phase 
describe elliptic and radial 
flow for many species 

• Very strong elliptic flow →
early equilibration

QGP→ almost perfect fluid
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The constituents “flow”

mesons

baryons

mT =
√

p2
T + m2

0• Elliptic flow is additive.
• If partons are flowing the 
complicated observed flow 
pattern in v2(pT) for hadrons

should become simple at the 
quark level 
pT → pT /n 
v2 → v2 / n ,   
n = (2, 3) for (meson, baryon)
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The constituents “flow”
mT =

√
p2

T + m2
0

Constituents of QGP are partons
Works for p, π, K0

s, Λ, Ξ..

v2
s ~ v2

u,d ~ 7%

• Elliptic flow is additive.
• If partons are flowing the 
complicated observed flow 
pattern in v2(pT) for hadrons

should become simple at the 
quark level 
pT → pT /n 
v2 → v2 / n ,   
n = (2, 3) for (meson, baryon)
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Summary of what we learned so far

31

We have created a new state of matter at RHIC 
- the QGP

• Energy density in the collision region is way above 
that where hadrons can exist

• The initial temperature of collision region is way 
above that where hadrons can exist

• The medium has quark and gluon degrees of 
freedom in initial stages

• The QGP is flowing like an almost “perfect” liquid
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How to learn more about QGP?

Calibrated 
LASER

Matter we want to study

Calibrated
Light Meter

Calibrated
Heat Source

32
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Calibrated 
LASER

Matter we want to study

Energy released
in A+A collision

(27 TeV for Au+Au at RHIC)

Detectors
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• High momentum particle
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How to learn more about QGP?

Matter we want to study

Energy released
in A+A collision

(27 TeV for Au+Au at RHIC)

Detectors
Hard Probes

• Photons
• Partons (q, g)
• High momentum particle

Medium ⇔ Probe
Self-generated probes

32
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q

q

hadrons
leading
particle

leading 
particle

Schematic view of  jet production

hadrons

 Early production in parton-parton scatterings with large Q2.

 Direct interaction with partonic phases of the reaction 

Using high momentum particles as probes
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q

q

hadrons
leading
particle

jet production in quark matter
     Therefore use these high 
momentum products as probes 
at RHIC 

• attenuation or absorption of 
high pT hadrons
 

 Early production in parton-parton scatterings with large Q2.

 Direct interaction with partonic phases of the reaction 

Using high momentum particles as probes
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Looking for attenuation/absorption

Nuclear
Modification 
Factor:

No “Effect”:
• R < 1 at small momenta - 
production from thermal bath

• R = 1 at higher momenta where
        hard processes dominate 

Average number 
of p-p collision
in A-A collision 

34

Compare to p-p at same collision energy

R<1  at high pT if QGP 
affecting parton’s propagation
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High-pT suppression 
Observations at RHIC:

1. Photons are not suppressed
• Good! γ don’t interact with 

medium
• Ncoll scaling works

35
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High-pT suppression 
Observations at RHIC:

1. Photons are not suppressed
• Good! γ don’t interact with 

medium
• Ncoll scaling works

2. Hadrons are suppressed in 
central collisions 
• Huge: factor 5
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High-pT suppression 
Observations at RHIC:

1. Photons are not suppressed
• Good! γ don’t interact with 

medium
• Ncoll scaling works

3. Hadrons are not suppressed 
in peripheral collisions
• Good! medium less dense

2. Hadrons are suppressed in 
central collisions 
• Huge: factor 5
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High-pT suppression 
Observations at RHIC:

1. Photons are not suppressed
• Good! γ don’t interact with 

medium
• Ncoll scaling works

3. Hadrons are not suppressed 
in peripheral collisions
• Good! medium less dense

2. Hadrons are suppressed in 
central collisions 
• Huge: factor 5

35

sQGP - strongly coupled - colored objects suffer large energy loss 
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Definition of a “jet”

hadron

hadron

36
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Definition of a “jet”
• Use Jets – the possible for 

“knock-on” collisions of 
partons

• The fragmented “bits” appear 
as “normal” subatomic 
particles

        pions, kaons,etc

• Seen in high-energy physics 
experiments since 
mid-1970’s

kaon

pion

pion

pion

pionpion

kaon

36
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Definition of a “jet”
• Use Jets – the possible for 

“knock-on” collisions of 
partons

• The fragmented “bits” appear 
as “normal” subatomic 
particles

        pions, kaons,etc

• Seen in high-energy physics 
experiments since 
mid-1970’s

kaon

pion

pion

pion

pionpion

kaon

Jets commonly come in pairs

36
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Using jets to study the QGP properties

• “is this thing on?”

A case study: opacity of fog

37
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Using jets to study the QGP properties

• “is this thing on?” • First beam - least know the 
source is on.

• Second beam intensity tells you a 
lot about matter passed through

A case study: opacity of fog

37
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Using jets to study the QGP properties

• First beam - least know the 
source is on.

• Second beam intensity tells you a 
lot about matter passed through

Predictions
QGP: “backwards” jet will be absorbed by medium
Hadron gas: “backwards” jet be less affected by medium

?

A case study: opacity of fog

37
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Find this …

p+p →jet+jet 
(STAR@RHIC)

nucleon nucleon
parton

jet

jet

leading hadron

38

Finding a jet in a Au-Au event
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Find this … … in this

p+p →jet+jet 
(STAR@RHIC)

Au+Au →??? 
(STAR@RHIC)

nucleon nucleon
parton

jet

jet

leading hadron

38

Seems almost impossible

Finding a jet in a Au-Au event
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How to find a jet? - an algorithm
• How to locate the running 

of the bulls in Pamplona, 
Spain:

39
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How to find a jet? - an algorithm
• How to locate the running 

of the bulls in Pamplona, 
Spain:

39

• start by finding one fast 
moving bull
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How to find a jet? - an algorithm
• How to locate the running 

of the bulls in Pamplona, 
Spain:

39

• start by finding one fast 
moving bull

• look others moving in 
roughly the same direction 
- where there’s one bull 
there’s usually another
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How to find a jet? - an algorithm
• How to locate the running 

of the bulls in Pamplona, 
Spain:

Jet finding is now simple: just 
replace “bull” by “particle”

39

• if the bull density is high, 
you often find many 
people moving in 
opposite direction

• start by finding one fast 
moving bull

• look others moving in 
roughly the same direction 
- where there’s one bull 
there’s usually another
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Jets in Au-Au collisions!
p+p → dijet

• Trigger: highest pT track

• Δφ distribution:
40
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trigger Phys Rev Lett 90, 082302

min. bias p+p collisions

Jets in Au-Au collisions!
p+p → dijet

40
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central Au+Au collisions

Jets in Au-Au collisions!
p+p → dijet

?

40

Δφ ≈ 0: central Au+Au similar to p+p
Δφ ≈ π: strong suppression of back-to-back   
             correlations in central Au+A
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8<pT
trig<15 GeV/c

Observation of “Punch through”

41

If use high-pT triggers: 
 
• Away-side peak re-emerges

• Smaller in Au-Au than d-Au

• Virtually no background

STAR PRL 97 (2006) 162301
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8<pT
trig<15 GeV/c

Observation of “Punch through”

High energy jets 
“punch through” 
the medium.  

41

If use high-pT triggers: 
 
• Away-side peak re-emerges

• Smaller in Au-Au than d-Au

• Virtually no background

STAR PRL 97 (2006) 162301
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Gluon radiation: Multiple final-
state gluon radiation off the 
produced hard parton induced 
by the traversed dense colored 
medium Medium
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• Mean parton energy loss ∝ medium 
properties:
• ΔEloss ~ ρgluon  (gluon density)

• ΔEloss ~ ΔL2    (medium length)            
⇒ ~ ΔL with expansion

• Characterization of medium
• transport coefficient

• is 〈pT2〉 transferred from the medium to 
a hard gluon per unit path length

Gluon radiation: Multiple final-
state gluon radiation off the 
produced hard parton induced 
by the traversed dense colored 
medium Medium
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   ~5-10 GeV/fm



The matter we create at RHIC is a               it is
fantastically hot

and has an 
incredible energy density. 

It 
 exists for only an instant

yet shows 
many signs of being in equilibrium.

It flows like a
 nearly “perfect” fluid

and appears to have
 quark and gluon degrees of freedom

which causes
significant energy loss to partons passing through 
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Summary
sQGP
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The next energy frontier
The Large Hadron Collider (LHC) at CERN will be 
commissioned in 2008 with over an order of magnitude 
higher energy than at RHIC.

3 experiments with 
dedicated heavy-ion 
experiments
  ALICE
  ATLAS
 CMS 

Instead of 40 TeV, 1000 TeV !

sQGP: hotter,bigger,longer lived 
 more detailed measurements


