Creating Quark Soup

Helen Caines - Yale University April 13th 2009 Franklin & Marshall College

10 ⁻⁴⁴ sec	Quantum Gravity	Unification of all 4 forces	10 ³² K
10 ⁻³⁵ sec	Grand Unification	E-M/Weak = Strong forces	10 ²⁷ K
10 ⁻³⁵ sec ?	Inflation	universe exponentially expands by 10 ²⁶	10 ²⁷ K
2 10 ⁻¹⁰ sec	Electroweak unification	E-M = weak force	10 ¹⁵ K
2·10 ⁻⁶ sec	Proton- Antiproton pairs	creation of nucleons	10 ¹³ K
6 sec	Electron-Positron pairs	creation of electrons	6x10 ⁹ K
3 min	Nucleosynthesis	light elements formed	10 ⁹ K
10 ⁶ yrs	Microwave Background	recombination - transparent to photons	3000 K
10 ⁹ yrs ?	Galaxy formation	bulges and halos of normal galaxies form	20 K
Franklin L Marshall College - April 2009 2			

The universe gets cooler !

Reheating Matter ?

Essential ingredients of matter

Essential ingredients of matter

Helen Caines

More about partons

Ordinary matter made of **up** and **down** quarks

Quarks interact by exchanging gluons
 Nucleons are held together by gluons

More about partons

Ordinary matter made of **up** and **down** quarks

Quarks interact by exchanging gluons
 Nucleons are held together by gluons

Free quarks have never been seen - distinctive non-integer charge

Helen Caines

Why we don't see free quarks

The size of a nucleus is 1.2A^{1/3} quark fm where A is the mass number and a fm is 10⁻¹⁵ m

Why we don't see free quarks

Why we don't see free quarks

Compare to gravitational force at Earth's surface

$$F = 1.6 \times 10^5 N = M \times g = M \times 9.8 m/s^2$$
$$\longrightarrow M = 16,300 kg$$

Quarks exert 16 metric tons of force on each other!

Helen Caines

Confinement: fundamental & crucial (but *not* understood!) feature of strong force - colored objects (quarks) have ∞ energy in normal vacuum

Confinement: fundamental & crucial (but *not* understood!) feature of strong force - colored objects (quarks) have ∞ energy in normal vacuum

Confinement: fundamental & crucial (but *not* understood!) feature of strong force - colored objects (quarks) have ∞ energy in normal vacuum

> Strong color field Force *grows* with separation !!!

Confinement: fundamental & crucial (but *not* understood!) feature of strong force - colored objects (quarks) have ∞ energy in normal

Confinement: fundamental & crucial (but *not* understood!) feature of strong force - colored objects (quarks) have ∞ energy in normal vacuum

Confinement: fundamental & crucial (but *not* understood!) feature of strong force - colored objects (quarks) have ∞ energy in normal vacuum

To understand the strong force and confinement: Create and study a system of deconfined colored quarks and gluons

Helen Caines

We try to make a deconfined state of matter

We try to make a deconfined state of matter

Quarks are also confined within mesons

Helen Caines

We try to make a deconfined state of matter

Quarks are also confined within mesons

How can we create a deconfined state of QCD matter?

We try to make a deconfined state of matter

<u>Confinement</u>: feature of strong force

colored objects (quarks)
 have ∞ energy in normal vacuum

Quarks are also confined within mesons

How can we create a deconfined state of QCD matter? by heating or compressing

Helen Caines

We try to make a deconfined state of matter

<u>Confinement</u>: feature of strong force

colored objects (quarks)
 have ∞ energy in normal vacuum

Quarks are also confined within mesons

How can we create a deconfined state of QCD matter?

by heating or compressing

Quark Gluon Plasma ~6x Normal nuclear density

Helen Caines

Thermodynamics - phase transitions

Phase transition or a crossover?

Signs of a phase transition:

1st order: discontinuous in entropy at $T_c \rightarrow$ Latent heat, a mixed phase S

Higher order: discontinuous in higher derivatives of $\delta^n S / \delta T^n \rightarrow no$ mixed phase - system passed smoothly and uniformly into new state (ferromagnet)

Temperature
$$\Leftrightarrow$$
transverse momentum $T \propto \langle p_T \rangle$ Energy density \Leftrightarrow transverse energy $\varepsilon \propto dE_T/dy \cong \langle m_T \rangle dN/dy$ Entropy \Leftrightarrow multiplicity $S \propto dN/dy$

Helen Caines

The order of the phase transition

"A first-order QCD phase transition that occurred in the early universe would lead to a surprisingly rich cosmological scenario." Ed Witten, Phys. Rev. D (1984)

The order of the phase transition

"A first-order QCD phase transition that occurred in the early universe would lead to a surprisingly rich cosmological scenario." Ed Witten, Phys. Rev. D (1984)

The order of the phase transition

"A first-order QCD phase transition that occurred in the early universe would lead to a surprisingly rich cosmological scenario." Ed Witten, Phys. Rev. D (1984)

NASA/WMAP Apparently it did not ! Thus we suspect a smooth cross over or a weak first order transition

QCD phase diagram of hadronic matter

Helen Caines

QCD phase diagram of hadronic matter

Helen Caines

The phase transition in the laboratory

Helen Caines

Franklin & Marshall College - April 2009

11

RHIC @ Brookhaven National Lab

RHIC - Relativistic Heavy Ion Collider 3.8 km accelerator that can be seen from space

Helen Caines

Unusual facts about RHIC

• RHIC's beam travels at 99.995% the speed of light (186,000 miles per second).

 RHIC's two rings consist of 1740 super-conducting magnets each cooled by liquid helium to -269°C

• RHIC contains seven tons of helium

 enough to fill all the balloons in Macy's Thanksgiving Day Parades for the next 100 years

• The refrigerator to cool the helium needs a power of 15 MW (as much as 15000 homes! we shut down over the summer)

- Over 20 years less than one gram of gold is used in the beam.
- At top energy: stored beam energy is 200kJ per ring
 energy 2000 people get drinking a single drop of beer each

RHIC - the experiments

Helen Caines

RHIC - the experiments

Helen Caines

Geometry of a heavy-ion collision

Number of participants (N_{part}): number of incoming nucleons (participants) in the overlap region Number of binary collisions (N_{bin}): number of equivalent inelastic nucleon-nucleon collisions $N_{bin} \ge N_{part}$

Helen Caines

A peripheral Au-Au collision

 $\text{Color} \Rightarrow \text{Energy loss in TPC gas}$

Peripheral Collision

Helen Caines
39.4 TeV in central Au-Au collision

>5000 hadrons and leptons

- Only charged particles shown
- Neutrals don't ionise the TPC's gas so are not "seen" by this detector.

Helen Caines

39.4 TeV in central Au-Au collision

>5000 hadrons and leptons

<u>26 TeV</u> is removed from colliding beams.

- Only charged particles shown
- Neutrals don't ionise the TPC's gas so are not "seen" by this detector.

Helen Caines

The energy is contained in one collision

Helen Caines

The energy is contained in one collision

Central Au+Au Collision: 26 TeV ~ 6 µJoule

Sensitivity of human ear: $10^{-11} \text{ erg} = 10^{-18} \text{ Joule} = 10^{-12} \mu \text{Joule}$ A Loud "Bang" if E \Rightarrow Sound

Helen Caines

The energy is contained in one collision

Central Au+Au Collision: 26 TeV ~ 6 µJoule

Sensitivity of human ear: $10^{-11} \text{ erg} = 10^{-18} \text{ Joule} = 10^{-12} \mu \text{Joule}$ A Loud "Bang" if E \Rightarrow Sound

Most goes into particle creation

Helen Caines

Helen Caines

Helen Caines

Franklin L Marshall College - April 2009

19

Helen Caines

5 GeV/fm³. Is that a lot?

In a year, the U.S. uses ~100 quadrillion BTUs of energy (1 BTU = 1 burnt match):

$$100 \times 10^{15} BTU \times \frac{1060J}{BTU} \times \frac{1eV}{1.6 \times 10^{-19}J} = 6.6 \times 10^{38} eV$$

5 GeV/fm³. Is that a lot?

In a year, the U.S. uses ~100 quadrillion BTUs of energy (1 BTU = 1 burnt match):

$$100 \times 10^{15} BTU \times \frac{1060J}{BTU} \times \frac{1eV}{1.6 \times 10^{-19}J} = 6.6 \times 10^{38} eV$$

At 5 GeV/fm³, this would fit in a volume of:

$$6.6 \times 10^{38} eV \div \frac{5 \times 10^9 eV}{fm^3} = 1.3 \times 10^{29} fm^3$$

5 GeV/fm³. Is that a lot?

In a year, the U.S. uses \sim 100 quadrillion BTUs of energy (1 BTU = 1 burnt match):

$$100 \times 10^{15} BTU \times \frac{1060J}{BTU} \times \frac{1eV}{1.6 \times 10^{-19}J} = 6.6 \times 10^{38} eV$$

At 5 GeV/fm³, this would fit in a volume of:

$$6.6 \times 10^{38} eV \div \frac{5 \times 10^9 eV}{fm^3} = 1.3 \times 10^{29} fm^3$$

Or, in other words, in a box of the following dimensions:

$$\sqrt[3]{1.3 \times 10^{29} \, fm^3} = 5 \times 10^9 \, fm = 5 \, \mu m$$

Helen Caines

A human hair

Helen Caines

What is the temperature of the medium?

- Statistical Thermal Models:
 - Assume a system that is thermally (constant T_{ch}) and chemically (constant n_i) equilibrated
 - System composed of non-interacting hadrons and resonances
 - Obey conservation laws: Baryon Number, Strangeness, Isospin
- Given T_{ch} and μ 's (+ system size), n_i 's can be calculated in a grand canonical ensemble $n_i = \frac{g}{2\pi^2} \int_0^{\infty} \frac{p^2 dp}{e^{(E_i(p) - \mu_i)/T} \pm 1}, E_i = \sqrt{p^2 + m_i^2}$

Fitting the particle ratios

Number of particles of a given species related to temperature

$$dn_i \sim e^{-(E-\mu_B)/T} d^3 p$$

- Assume all particles described by same temperature T and μ_B
- one ratio (e.g., p / p) determines µ / T :

$$\frac{\bar{p}}{p} = \frac{e^{-(E-\mu_B)/T}}{e^{-(E-\mu_B)/T}} = e^{-2\mu_B/T}$$

- A second ratio (e.g., K / π) provides T $\rightarrow \mu$

$$\frac{K}{\pi} = \frac{e^{-E_K/T}}{e^{-E_\pi/T}} = e^{-(E_K - E\pi)/T}$$

Then all other hadronic ratios (and yields) defined

Helen Caines

Fitting the particle ratios

Number of particles of a given species related to temperature

Helen Caines

Where RHIC sits on the phase diagram

Helen Caines

Blackbody radiation

Planck distribution describes intensity as a function of the wavelength of the emitted radiation

Blackbody radiation

Planck distribution describes intensity as a function of the wavelength of the emitted radiation

"Blackbody" radiation is the spectrum of radiation emitted by an object at temperature T

As T increases curve changes

Blackbody radiation

Planck distribution describes intensity as a function of the wavelength of the emitted radiation

"Blackbody" radiation is the spectrum of radiation emitted by an object at temperature T

As T increases curve changes

1/Wavelength Frequency E

Helen Caines

Determining the temperature

From transverse momentum distribution deduce temperature ~120 MeV

$$T = \frac{2E}{3k}$$

 $\sim 9 \times 10^{11} K$

Determining the temperature

From transverse momentum distribution deduce temperature ~120 MeV

$$E = \frac{3}{2}kT$$

$$T = \frac{2E}{3k}$$

 $=\frac{2 \times 120 \times 10^{6}}{3 \times 1.4 \times 10^{-23}}$

 $\sim 9 \times 10^{11} K$

Strong collective radial expansion

Strong collective radial expansion

 Different spectral shapes for particles of differing mass
→ strong collective radial flow

Helen Caines

Strong collective radial expansion

 Different spectral shapes for particles of differing mass
→ strong collective radial flow

Good agreement with hydrodynamic prediction for soft EOS (QGP+HG)

Anisotropic/Elliptic flow

 v_2 : 2nd harmonic Fourier coefficient in dN/d ϕ with respect to the reaction plane

Anisotropic/Elliptic flow

 v_2 : 2nd harmonic Fourier coefficient in dN/d ϕ with respect to the reaction plane

Anisotropic/Elliptic flow

Elliptic flow observable sensitive to early evolution of system Mechanism is self-quenching Large v_2 is an indication of *early* thermalization

Elliptic flow

Distribution of particles with respect to event plane, $\phi-\psi$, p_t>2 GeV; STAR PRL 90 (2003) 032301

 Very strong elliptic flow → early equilibration

Factor 3:1 peak to valley

Elliptic flow

Distribution of particles with respect to event plane, $\phi - \psi$, p_t>2 GeV; STAR PRL 90 (2003) 032301

 Pure hydrodynamical models including QGP phase describe elliptic and radial flow for many species

• Very strong elliptic flow \rightarrow early equilibration

Factor 3:1 peak to valley

Helen Caines

The constituents "flow"

- Elliptic flow is additive.
- If partons are flowing the complicated observed flow pattern in $v_2(p_T)$ for hadrons

 $\frac{d^2 N}{dp_T d\phi} \propto 1 + 2 v_2(p_T) \cos(2\phi)$

should become simple at the quark level $p_T \rightarrow p_T/n$

$$v_2 \rightarrow v_2 / n$$
 ,

n = (2, 3) for (meson, baryon)

The constituents "flow"

- Elliptic flow is additive.
- If partons are flowing the complicated observed flow pattern in $v_2(p_T)$ for hadrons

 $\frac{d^2 N}{dp_T d\phi} \propto 1 + 2 v_2(p_T) \cos(2\phi)$

should become simple at the quark level $p_T \rightarrow p_T/n$

$$v_2 \rightarrow v_2 / n$$
 ,

n = (2, 3) for (meson, baryon)

Works for p,
$$\pi$$
, K_s^0 , Λ , Ξ ..

Helen Caines

Franklin & Marshall College - April 2009

Constituents of QGP are partons

Summary of what we learned so far

- Energy density in the collision region is way above that where hadrons can exist
- The initial temperature of collision region is way above that where hadrons can exist
- The medium has quark and gluon degrees of freedom in initial stages

We have created a new state of matter at RHIC - the QGP

The QGP is flowing like an almost "perfect" liquid

Helen Caines

Helen Caines

How to learn more about QGP?

Using high momentum particles as probes

Early production in parton-parton scatterings with large Q².

Direct interaction with partonic phases of the reaction

Helen Caines

Using high momentum particles as probes

Early production in parton-parton scatterings with large Q².

Direct interaction with partonic phases of the reaction

Therefore use these high momentum products as probes at RHIC

• attenuation or absorption of high p_T hadrons

Looking for attenuation/absorption

Compare to p-p at same collision energy

Nuclear Nuclear Modification $R_{AA}(p_T) = \frac{Yield(A + A)}{Yield(p + p) \times \langle N_{coll} \rangle}$ Factor:

Average number of p-p collision in A-A collision

No "Effect":

 R < 1 at small momenta - production from thermal bath

 R = 1 at higher momenta where hard processes dominate

R<1 at high p_T if QGP affecting parton's propagation

Helen Caines

1.4

1. Photons are not suppressed

- Good! γ don't interact with medium
- N_{coll} scaling works

Helen Caines

1. Photons are not suppressed

- Good! γ don't interact with medium
- N_{coll} scaling works

2. Hadrons are suppressed in central collisions

Huge: factor 5

Observations at RHIC:

- 1. Photons are not suppressed
 - Good! γ don't interact with medium
 - N_{coll} scaling works
- 2. Hadrons are suppressed in central collisions
 - Huge: factor 5
- 3. Hadrons are not suppressed in peripheral collisions
 - Good! medium less dense

Observations at RHIC:

- 1. Photons are not suppressed
 - Good! γ don't interact with medium
 - N_{coll} scaling works
- 2. Hadrons are suppressed in central collisions
 - Huge: factor 5
- 3. Hadrons are not suppressed in peripheral collisions
 - Good! medium less dense

sQGP - strongly coupled - colored objects suffer large energy loss

Definition of a "jet"

Helen Caines

Definition of a "jet"

- Use Jets the possible for "knock-on" collisions of partons
- The fragmented "bits" appear as "normal" subatomic particles

pions, kaons,etc

 Seen in high-energy physics experiments since mid-1970's

Definition of a "jet"

- Use Jets the possible for "knock-on" collisions of partons
- The fragmented "bits" appear as "normal" subatomic particles

pions, kaons,etc

 Seen in high-energy physics experiments since mid-1970's

Using jets to study the QGP properties

A case study: opacity of fog

• "is this thing on?"

Helen Caines

Using jets to study the QGP properties

A case study: opacity of fog

- "is this thing on?"
 First beam least know the source is on.
 - Second beam intensity tells you a lot about matter passed through

Using jets to study the QGP properties

A case study: opacity of fog

- First beam least know the source is on.
- Second beam intensity tells you a lot about matter passed through

Predictions QGP: "backwards" jet will be absorbed by medium Hadron gas: "backwards" jet be less affected by medium

Helen Caines

Finding a jet in a Au-Au event

Helen Caines

Finding a jet in a Au-Au event

Helen Caines

 How to locate the running of the bulls in Pamplona, Spain:

Helen Caines

- How to locate the running of the bulls in Pamplona, Spain:
 - start by finding one fast moving bull

- How to locate the running of the bulls in Pamplona, Spain:
 - start by finding one fast moving bull
 - look others moving in roughly the same direction
 where there's one bull there's usually another

- How to locate the running of the bulls in Pamplona, Spain:
 - start by finding one fast moving bull
 - look others moving in roughly the same direction
 where there's one bull there's usually another
 - if the bull density is high, you often find many people moving in opposite direction

Jet finding is now simple: just replace "bull" by "particle"

Jets in Au-Au collisions!

$$p+p \rightarrow dijet$$

- Trigger: highest p_T track
- $\Delta \phi$ distribution:

Helen Caines

Jets in Au-Au collisions!

Jets in Au-Au collisions!

Helen Caines

Observation of "Punch through"

 $8 < p_T^{trig} < 15 \text{ GeV/c}$

Helen Caines

Observation of "Punch through"

 $8 < p_T^{trig} < 15 \text{ GeV/c}$

Helen Caines

Interpretation

Gluon radiation: Multiple finalstate gluon radiation off the produced hard parton induced by the traversed dense colored medium

Helen Caines

Interpretation

Gluon radiation: Multiple finalstate gluon radiation off the produced hard parton induced by the traversed dense colored medium

- Mean parton energy loss ∝ medium properties:
 - $\Delta E_{loss} \sim \rho_{gluon}$ (gluon density)
 - $\Delta E_{loss} \sim \Delta L^2$ (medium length) $\Rightarrow \sim \Delta L$ with expansion
- Characterization of medium
 - transport coefficient \hat{q}
- is $\langle p_T^2 \rangle$ transferred from the medium to a hard gluon per unit path length

q̂ ~5-10 GeV/fm

Helen Caines

Summary

The matter we create at RHIC is a sQGP *fantastically hot*

and has an

incredible energy density.

lt

exists for only an instant

yet shows

many signs of being in equilibrium.

It flows like a

nearly "perfect" fluid

and appears to have

quark and gluon degrees of freedom

which causes

significant energy loss to partons passing through

Helen Caines

Franklin L Marshall College - April 2009

it is

The next energy frontier

The Large Hadron Collider (LHC) at CERN will be commissioned in 2008 with over an order of magnitude higher energy than at RHIC.

Instead of 40 TeV, 1000 TeV !

3 experiments with dedicated heavy-ion experiments ALICE ATLAS CMS

sQGP: hotter,bigger,longer lived more detailed measurements

Helen Caines