Using particle jet correlations to probe the medium at RHIC

Helen Caines - Yale University

DIS 2008 – University College London April 7th-11th 2008

Using "jets" as probes

- Early production in parton-parton scatterings with large Q².
- Direct interaction with partonic phases of the reaction

Using "jets" as probes

- Early production in parton-parton scatterings with large Q².
- Direct interaction with partonic phases of the reaction

Therefore use "jets" as probes at RHIC

- attenuation or absorption of jets:
 "jet quenching"
- suppression of high p_T hadrons
- modification of angular correlation
- changes of particle composition

jet production in quark matter

Jets – a calibrated probe?

Jet production in p+p understood in pQCD framework

Jets – a calibrated probe?

Jet production in p+p understood in pQCD framework Particle production in p+p also well modeled.

Seems we have a reasonably calibrated probe

Jets in Au+Au collisions!

- Trigger: highest p_T track
- $\Delta \phi$ distribution:

Jets in Au+Au collisions!

Observation of "Punch through"

Helen Caines – Yale University – April 2008 – UCL – DIS2008

Observation of "Punch through"

High p_T triggered away side RMS width

High p_T triggered away side RMS width

RMS Width - centrality independent

Consistent with p+p data

High p_T triggered away side RMS width

Consistent with p+p data

Vacuum fragmentation?

Away-side di-hadron fragmentation functions

- Study medium-induced modification of fragmentation function due to energy loss
- Without full jet reconstruction, parton energy not measurable
 - z not measured ($z=p_{hadron}/p_{parton}$)
 - z_T=p_{T,assoc}/p_{T,trig}
- Di-hadron fragmentation function di-hadron jet-like correlated yield to single hadron yield ratio

$$D^{h_1h_2}(z_T, p_T^{\text{trig}}) = p_T^{\text{trig}} \frac{d\sigma_{AA}^{h_1h_2}/dp_T^{\text{trig}}dp_T}{d\sigma_{AA}^{h_1}/dp_T^{\text{trig}}}$$
$$I_{AA} = \frac{D_{AA}(z_T, p_T^{\text{trig}})}{D_{pp}(z_T, p_T^{\text{trig}})}$$

Away-side di-hadron fragmentation functions

H. Zhong et al., PRL 97 (2006) 252001 C. Loizides, Eur. Phys. J. C 49, 339-345 (2007)

6< p_{T trig} < 10 GeV

- Study medium-induced modification of fragmentation function due to energy loss
- Without full jet reconstruction, parton energy not measurable
 - z not measured ($z=p_{hadron}/p_{parton}$)
 - z_T=p_{T,assoc}/p_{T,trig}
- Di-hadron fragmentation function di-hadron jet-like correlated yield to single hadron yield ratio

$$D^{h_1h_2}(z_T, p_T^{\text{trig}}) = p_T^{\text{trig}} \frac{d\sigma_{AA}^{h_1h_2}/dp_T^{\text{trig}}dp_T}{d\sigma_{AA}^{h_1}/dp_T^{\text{trig}}}$$
$$I_{AA} = \frac{D_{AA}(z_T, p_T^{\text{trig}})}{D_{pp}(z_T, p_T^{\text{trig}})}$$

- Inconsistent with *Parton Quenching* Model calculation
- Modified fragmentation model better

O. Catu QM2008

Away-side di-hadron fragmentation functions

- Inconsistent with *Parton Quenching* Model calculation
- Modified fragmentation model better

O. Catu QM2008

- Denser medium in central Au+Au than central Cu+Cu
- Similar medium for similar N_{part}
 Vacuum fragmentation after parton E_{loss} in the medium

Helen Caines – Yale University – April 2008 – סטב אום און Helen Caines – Yale University – April 2008 – סטב און

p_{T} evolution of di-hadron correlations

PHENIX Preliminary arXiv:0801.4545 [nucl-ex]

- single-peak →
 double peak
- Away-side yield increases

p_{T} evolution of di-hadron correlations

• As p_T decreases,

- single-peak →
 double peak
- Away-side yield increases

• Head region yield begins to dominate over shoulder region

PHENIX Preliminary arXiv:0801.4545 [nucl-ex]

Head and Shoulder evolution

h-h correlations $1 < p_{Ta} < 2.5 < p_{Tt} < 4GeV/c$

Head and Shoulder evolution

h-h correlations $1 < p_{Ta} < 2.5 < p_{Tt} < 4GeV/c$

Shoulder due to away side jet interacting with medium

Path length dependencies

Non-central events have "elliptic" overlap geometries

Measurements w.r.t reaction plane angle:

- Change path length
- Keep everything else same

Path length effect on di-hadron correlation

- Shoulder peaks emerge as $\phi_t \Psi$ increases but are at fixed $\Delta \phi$
- Head peak (di-jet remnant) decreases as $\phi_t \Psi_{RP}$ increases

Centrality and path length effects

Centrality and path length effects

B. Mohnaty QM2008

Au+Au data consistent with Conical emission

Δø

Possible causes of conical emission

Mach Cone

Similar to jet creating sonic boom in air.

• Energy radiated from parton deposited in collective hydrodynamic modes.

•Mach angle depends on C_s

• T dependent

$$\frac{c_s}{v_{parton}} = \cos(\theta_M)$$

Angle independent of p_T^{assoc}

Possible causes of conical emission

Mach Cone

Similar to jet creating sonic boom in air.

• Energy radiated from parton deposited in collective hydrodynamic modes.

•Mach angle depends on C_s

• T dependent

$$\frac{c_s}{v_{parton}} = \cos(\theta_M)$$

Angle independent of p_T^{assoc}

Čerenkov Gluon Radiation

• Gluons radiated by superluminal parton.

$$\frac{c_n}{v_{parton}} = \cos(\theta_c)$$

• Angle dependent on p_T^{assoc}

Conical Emission Theories

Mach-cone:

- Can be produced in different theories:
 - Hydrodynamics
 - H. Stöcker et al. (Nucl.Phys.A750:121,2005)
 - J. Casalderra-Solana et. al. (Nucl.Phys.A774:577,2006)
 - T. Renk & J. Ruppert (Phys.Rev.C73:011901,(2006))
 - Colored plasma
 - J. Ruppert & B. Müller (Phys.Lett.B618:123,2005)
 - AdS/CFT
 - S. Gubser, S. Pufu, A. Yarom. (arXiv:0706.4307v1, 2007)
- Čerenkov Gluon Radiation:
 - I.M. Dremin (Nucl. Phys. A750: 233, 2006)
 - V. Koch et. al. (Phys. ReV. Lett. 96, 172302, 2006)
- Parton Cascade:
 - G. L. Ma et. al. (Phys. Lett. B647, 122, 2007)

References are only a small subset of those existing. Apologies to those not included.

Mach cone or Čerenkov gluons?

Angle predictions:

• Mach-cone:

Angle independent of associated p_T

• Čerenkov gluon radiation:

Angle decreases with associated p_T

Mach cone or Čerenkov gluons?

Angle predictions:

- Mach-cone: Angle independent of associated p_T
- Čerenkov gluon radiation: Angle decreases with associated p_T

1.5

0.5

1.5

0.5 1.5

D (rad)

0-20% Au+Au

 $2 < p_{\tau}^a < 3 \text{ GeV/c}$

3 < p_{_{T}}^a < 4 GeV/c

Mach cone or Čerenkov gluons?

Parton interactions on near side

Parton interactions on near side

Long range $\Delta(\eta)$ correlation

- the "Ridge"

Parton interactions on near side

Some possible explanations of the ridge

Recombination between thermal and shower partons at intermediate $\ensuremath{p_{\text{T}}}$

R.C. Hwa & C.B. Chiu Phys. Rev. C 72 (2005) 034903

QCD bremsstrahlung radiation boosted by transverse flow

S.A. Voloshin, Phys. Lett. B 632 (2007) 490 E. Shuryak, hep-ph:0706.3531

In medium radiation and longitudinal flow push

N. Armesto et.al Phys. Rev. Lett. 93 (2007) 242301

Broadening of quenched jets in turbulent color fields

A. Majumder et.al Phys. Rev. Lett. 99 (2004) 042301

Momentum Kick Model

C.Y. Wong hep-ph:0712.3282

All qualitatively consistent with the features of the ridge

Ridge: Increases with N_{part} Independent of colliding system Decreases with ϕ_t - Ψ

Spectra of ridge and shoulder particles

Spectra of ridge and shoulder particles

Composition of ridge and shoulders

Composition of ridge and shoulders

Composition of ridge and shoulders

Un-triggered pair correlations

Method: measure pair densities $\rho(\eta_1 - \eta_2, \phi_1 - \phi_2)$ for *all possible pairs* in same and mixed events. Define correlation measure as:

Un-triggered pair correlations

Au-Au fit function

Use proton-proton fit function + $cos(2\phi_{\Delta})$ quadrupole term ("flow"). This gives the *simplest possible* way to describe Au+Au data.

cos(2φ

φΔ

quadrupole

Un-triggered pair correlations

Au-Au fit function

Use proton-proton fit function + $cos(2\phi_{\Delta})$ quadrupole term ("flow"). This gives the *simplest possible* way to describe Au+Au data.

Small residual indicates goodness of fit

Evolution of mini-jet with centrality

Evolution of mini-jet with centrality

Evolution of mini-jet with centrality

Binary scaling reference followed until sharp transition at $\rho \sim 2.5 \sim 30\%$ of the hadrons in central Au+Au participate in the same-side correlation

Towards true jet reconstruction

- Reduce leading trigger particle biases from di-hadron correlations
- First step to jet reconstruction in A+A

Multi-hadron trigger

Towards true jet reconstruction

Jets have been observed at RHIC

Making important steps towards constraining models that try to explain:

- How partons interact with and lose energy in the medium
- Where that energy goes
- How the medium changes with \sqrt{s} , centrality, and ion collided

Jets have been observed at RHIC

Making important steps towards constraining models that try to explain:

- How partons interact with and lose energy in the medium
- Where that energy goes
- How the medium changes with \sqrt{s} , centrality, and ion collided

RHIC on the threshold of new era of quantitative comparison between theory and experiment that will characterize the properties of the remarkable new matter discovered at here

BACKUPS

At RHIC we've created a new state of matter

•The QGP is the:

hottest (T=200-400 MeV ~ 2.5 10^{12} K) densest (ϵ = 30-60 $\epsilon_{nuclear matter}$)

matter ever studied in the lab.

It flows as a

(nearly) perfect fluid

with systematic patterns, consistent with

quark degree of freedom

and a viscosity to entropy density ratio

lower

than any other known fluid.

Now want to learn more about properties

2 particle angular correlations

$$C(\Delta\phi) = \frac{Y_{same}(\Delta\phi)}{Y_{mixed}(\Delta\phi)} \times \frac{\int Y_{mixed}(\Delta\phi)d\phi}{\int Y_{same}(\Delta\phi)d\phi}$$
$$C(\Delta\phi) = b_0 \Big[1 + 2 \langle v_2^{assoc} \rangle \langle v_2^{trig} \rangle \cos(2\Delta\phi) \Big] + J(\Delta\phi)$$

Observation of di-jets: punch through

Observation of di-jets: punch through

Di-jet trigger

Т'

A1: p_T>1.5GeV/c

Observation of di-jets: punch through

What happens to away-side hump and near-side ridge if we trigger on di-jets ?

Data analysis: di-jet selection

O Correlation between primary trigger (T1) and "away-jet-axis trigger" (T2).

•T1 • •T2

- Di-jet trigger
 O Require that the 2 highest p_T particles are back-to-back in φ.
- O Assume this defines the jetaxis, look in 2D-space about the second trigger.

Change the surface-bias of near-side?

• Hope to shift distribution of hard scattering towards center of <u>medium</u>. Near-side parton travels through more medium

Create path lengths comparable in dense medium.

However not always from center could be tangential

Di-jets are suppressed

Once selected:

- No Away-side suppression Au+Au ~ d+Au
- No Away-side shape modification

Di-jets are suppressed

Once selected:

- No Away-side suppression Au+Au ~ d+Au
- No Away-side shape modification
- No Ridge

Di-jets are suppressed

Once selected:

- No Away-side suppression Au+Au ~ d+Au
- No Away-side shape modification
- No Ridge

Di-Jets don't interact with medium. Tangential jets or punch through without interaction ?

Trigger

$$\frac{c_s}{v_{parton}} = \cos(\theta_M)$$

$$c_s^2 = \frac{\partial p}{\partial \varepsilon}; \ v_{parton} \approx c$$

- Mach angle depends on speed of sound in medium
 - T dependent
- Angle independent of associated p_{T} .

•Away-side

$$\frac{c_s}{v_{parton}} = \cos(\theta_M)$$

$$c_s^2 = \frac{\partial p}{\partial \varepsilon}; \ v_{parton} \approx c$$

- Mach angle depends on speed of sound in medium
 - T dependent
- Angle independent of associated p_{T} .

Trigger

$$\frac{c_s}{v_{parton}} = \cos(\theta_M)$$

$$c_s^2 = \frac{\partial p}{\partial \varepsilon}; \ v_{parton} \approx c$$

- Mach angle depends on speed of sound in medium
 - T dependent
- Angle independent of associated p_T.

 T/T_c

•Mikherjee, Mustafa, Ray ⁰

0.6

•Phys. Rev. D75 (2007) 094015 Helen Caines – Yale University – April 2008 – UCL – DIS2008

$$\frac{c_s}{v_{parton}} = \cos(\theta_M)$$

$$c_s^2 = \frac{\partial p}{\partial \varepsilon}; \ v_{parton} \approx c$$

- Mach angle depends on speed of sound in medium
 - T dependent
- Angle independent of associated p_{T} . •Mikherjee, Mustafa, Ray⁰

μ_o=0.5T,

μ₀=0.8T,

 T/T_c

•Phys. Rev. D75 (2007) 094015 Helen Caines – Yale University – April 2008 – UCL – DIS2008

0.05

0.6

$$\frac{c_s}{v_{parton}} = \cos(\theta_M)$$

$$c_s^2 = \frac{\partial p}{\partial \varepsilon}; \ v_{parton} \approx c$$

- Mach angle depends on speed of sound in medium
 - T dependent
- Angle independent of associated p_{T} .

Čerenkov Gluon Radiation

- Gluons radiated by superluminal partons.
- Angle is dependent on emitte momentum.

$$\frac{c_n}{v_{parton}} = \cos(\theta_c) = \frac{c}{n(p)v_{parton}} \approx \frac{1}{n(p)}$$

•Čerenkov angle vs
•emitted particle

$$100$$
 $momentum$ $m_1=1T,m_2=3T$ $m_1=0.5T,m_2=3T$ $m_1=0.5T,m_2=1T$
 60 \bullet \bullet (Koch, Majumder, Wang
•PRL 96 172302 (2006)
 40 0 0.5 1 1.5
•p (GeV/c)

Mach cone?

Naive calc. of time averaged velocity of sound in medium:

$$\frac{C_{s}}{V_{parton}} = cos(\dot{e}_{M}) , V_{parton} = C$$

Cone angle ~ 1.36 radians $c_s = 0.2c!$

Mach cone?

Naive calc. of time averaged velocity of sound in medium:

$$\frac{C_{s}}{V_{parton}} = cos(\dot{e}_{M}) , V_{parton} = C$$

Cone angle ~ 1.36 radians $c_s = 0.2c!$

radians

Cone angle

ð 5

Au+Au 0-12%

STAR Preliminary

1.5

2

1.36±0.03

Helen Caines – Yale University – April 2008 – UCL – DIS2008

Golden Probe of QCD Energy Loss - y-Jet

 γ emerges "unscathed" from medium

- Full reconstruction of kinematics: real fragmentation function (D(z))

γ -hadron and π^0 -hadron correlations

Shower shape in Shower Maximum Detector gives γ -, π^0 -enriched samples

The γ -rich sample has lower near-side yield than π^0 .

Helen Caines – Yale University – April 2008 – UCL – DIS2008

First measure of away-side I_{AA} for γ -h

First measure of away-side I_{AA} for γ -h

Suppression similar level to inclusives in central collisions