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Soft and hard physics????
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Soft and hard physics??7??

Soft Hard

- >
0 ~2 pr (GeV/c)

Soft physics - bulk of particles produced sit below 2 GeV/c
phenomenology needed to describe data

Hard physics - calculable via pQCD
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Relativistic Heavy lons | -
Why, Where, and How

RHT Physics Outline :
Leicester - U.K QCD and Asymptotic Freedom
Helen Caines - Yale University Tﬁ e Q,uaré, g[uon Q’[asma
September 2009 The ﬂCC@[ET’dtOTS
The Experiments
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A brief history of RHI

1973: Gross, Wilczek and Politzer: Asymptotic freedom of
QCD

1974 Workshop on “BeV/nucleon collisions of heavy ions™ at
Bear Mountain, NY - turning point in bringing HI physics to
the forefront as a research tool

Driving Question: “Is the vacuum a medium whose properties
one can change?”

“We should investigate.... phenomena by distributing energy
of high nucleon density of a relatively large volume” T.D.Lee

Note: At this point the idea of quarks as the ultimate state of
matter at high energy density has not yet taken hold
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A brief history of RHI - |l

1975: Collins and Perry - EoS of matter needed to set upper limit
on the maximum mass of a neutron star

Crucial realization: ultra-high T & baryon density corresponds to
QCD asymptotic regime, no longer hadronic. State would be a
weakly interacting “Quark Soup”

1978: Shuryak coined the term “Quark Gluon Plasma”

1984: SPS starts, Pb-Pb at Vsnn = 9-17.3 GeV (end 2003)
1986: AGS starts, S-S up to at Vsnn = 7.6 GeV (end 2000)
2000: RHIC starts, Au-Au at Vsnn = 200 GeV

2010: LHC starts, Pb-Pb at Vsnn = 5.5 TeV
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The standard model

Quantum field theory that unifies our understanding of 3 out of
the 4 fundamental forces:

electromagnetic, weak, strong

gravity- understood classically but no QFT to date

Describes interactions of quarks and leptons through exchange
of force particles - gauge bosons

So far all experiments have been consistent with Standard
model predictions

Does not describe:

All fundamental interactions - gravitation missing (+dark matter
and dark energy)

Mass of the neutrinos (but simple extensions do)
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QCD - Gross, Politzer, Wilczek - 1973
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Quantum Chromodynamics:

- theory of strong force
- quarks and gluons fundamental constituents

- gluons force carriers - self interacting
(unlike photons in QED)

Quarks in the human body represent only ~2% of total mass.
Rest from strong interaction via chiral symmetry breaking
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Comparing theories

QCD

Gsz1

Force = const
3 colour charges:

red, blue, green
Gauge boson: g (8)
Charged?: Yes

self interaction

QED

Oem = e?/41m = 1/137

Force = 1/r?
2 charges:

+ , -
Gauge boson: y (1)
Charged?: No

no self interaction
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Comparing theories

QCD

Force = const
3 colour charges:

red, blue, green
Gauge boson: g (8)
Charged?: Yes

self interaction

QED

Oem = 92/41_[ =~ 1/137

Force = 1/r?

2 charges:
+ -

Gauge boson: y (1)
Charged?: No

no self interaction
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Comparing theories

QCD

Force = const
3 colour charges:

red, blue, green
Gauge boson: g (8)
Charged?: Yes

self interaction

QED

Oem = 92/41_[ =~ 1/137

18
/\ |
[ \
\\\

\"’/’\[ J
P /”ﬂi

N—)

Force = 1/r?

2 charges:
+ -

Gauge boson: y (1)
Charged?: No

no self interaction

Helen Caines -XVM UK Summer School - Sept. 2009 8

Wednesday, September 16, 2009


http://www.americanscientist.org/articles/00articles/dzierbacap7.html
http://www.americanscientist.org/articles/00articles/dzierbacap7.html
http://www.americanscientist.org/articles/00articles/dzierbacap7.html
http://www.americanscientist.org/articles/00articles/dzierbacap7.html

Comparing theories

QCD

4 a
V,(r) = —50‘7 +kr

Force = const
3 colour charges:

red, blue, green
Gauge boson: g (8)
Charged?: Yes

self interaction

QED
di142 Oem
Vem = — = —
(T) 4megr r

Oem = 92/41_[ =~ 1/137

Force = 1/r?

2 charges:
+ -

Gauge boson: y (1)
Charged?: No

no self interaction
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Confinement - QCD

Confinement: fundamental & crucial feature of strong interaction
force = const has significant consequences

quark

“white” proton
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Confinement: fundamental & crucial feature of strong interaction
force = const has significant consequences

quark

“white” proton
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Confinement - QCD

Confinement: fundamental & crucial feature of strong interaction
force = const has significant consequences

Strong color field
Force grows with
separation !!!
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Confinement - QCD

Confinement: fundamental & crucial feature of strong interaction
force = const has significant consequences

quark-antiquark pair
created from vacuum
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Confinement - QCD

Confinement: fundamental & crucial feature of strong interaction
force = const has significant consequences

“white” proton “white” w9
(confined quarks) (confined quarks)
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Confinement - QCD

Confinement: fundamental & crucial feature of strong interaction
force = const has significant consequences

“white” proton “white” w9
(confined quarks) (confined quarks)

To understand the strong force and confinement: Create and
study a system of deconfined colored quarks and gluons
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We don’t see free quarks

The size of a nucleus is 1.2A13
quark  fm where A is the mass
number and a fmis 10-m
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We don’t see free quarks

T The size of a nucleus is 1.2A13
quark quark  fm where A is the mass
number and a fmis 10-1° m
GeV 10%V 1.6 x 107197
X
f m 10~ 15m eV

— 1.6 x 10°N
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We don’t see free quarks

T The size of a nucleus is 1.2A13
quark quark  fm where A is the mass
number and a fmis 10-1° m
GeV 10%V  1.6x10°1%J
X
fm 10~ 5m eV

Compare to gravitational force at Earth’s surface

F=16x10°N=Mxg=M x9.8m/s
> M = 16,300kg

Quarks exert 16 metric tons of force on each other!|

— 1.6 x 10°N
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Asymptotic freedom

Stated Coupling Constants are “constant” 1 - not true

Runs with Q? (mtm transfer)
accounts for vacuum polarisation

Oés(QQ) _ OéS(:UJQ)

1+ (s (12) ) in(@Q? /)]
GS(IJZ) ~11
u2: renormalization scale
33: gluon contribution
nr. # quark flavours
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Asymptotic freedom

Runs with Q? (mtm transfer)

Stated Coupling Constants are “constant” 1 - not true

Running measured

accounts for vacuum polarisation experimentally
2 o (Q) "‘L"a Dara uid E -
Qo (QQ) . aS (lj/ ) s \i\: Deep Inclastic Scattering “
S _ R4 ¢ ¢ Annihilation ¢ w
1+ (as(u2) P )in(@Q2 /2 [\ LIiffff'L'iﬁ.:.'.','.'_‘ff.,'.'f.‘ S
GS(IJZ) ~11 ‘.\ “t AGL aMp)
u2: renormalization scale 0.3 | \\ (.):(’.4, {;:::::-:----- p
33: gluon contribution N, 151 MeV — — 0.1156
ns. # quark flavours N
0.2 } NS
: Jﬁxg&,. r\%(
lllr=.:3\< .
0.1} B
I 10 Q [GeV] 100
0.2 fm 0.02 fm 0.002 fm
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Asymptotic freedom

Stated Coupling Constants are “constant” 1 - not true

Runs with Q2 (mtm transfer) Running measured
accounts for vacuum polarisation experimentally
l!\\ Theory | © 9 E\
2 a(Q) [\ Dake 12 £ 5
aS S L Deep Inclastic Scattering A
OéS(QQ) — (ILL ) \,III'\l", ¢"¢ Annihilation o »
[1 _i_ (as (/’LQ) M) (QQ/M 0.4 ""“'\'«.‘ ILT\III-A\n( ”“M‘AI"\ o 7
CXs(IJZ) ~11 ‘:\\ AGK (M)
u2: renormalization scale o3} II\y ach {z:.:'kl G
33: gluon contribution N\ PO List Mev — —o.n1s6
ni: # quark flavours g
0.2 | s
= T\Jﬁ i
GS(QZ) — O, das Q — OO, r _)O ‘{{‘IF:{%:"'};_:‘,.
Coupling very weak S s
— partons are essentially free . 10 P—— {00
Asymptotic Freedom 0.2 fm 0.02 fm 0.002 fm
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Asymptotic freedom

Stated Cnounlinn CAanctante aro “~Ananctant” 1 _ nnt triio
Runsyv E#E8 The Nobel Prize in Physics 2004 ed
dCCour /
"for the discovery of asymptotic freedom in the theory of the strong 2 )
interaction” —
QS(QQ) — -
GS(IJZ) ~ it (M)
12: renor T
33: gluor 0.1156
nre. # qua
Gs(QZ) %
Coupli ey
— pPal _ 00
David J. Gross H. David Politzer Frank Wilczek
Asymptotic Freedom 0.2 fm 0.02 fm 0.002 fm
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Evolution of the universe

$I89A 000°00E

.
-]
=
=
o
3
<
)
L
a

SRIA volta s1-2t

¢ Radius of the Visible Universe —»

Inflation
Quark Soup

Parting Company

10-44 sec
10-35 sec
10-35 sec ?
2 1010 sec
2-10°% sec
6 sec

3 min

106 yrs

10° yrs ?

Quantum Gravity
Grand Unification
Inflation

Electroweak
unification

Proton-
Antiproton pairs

Electron-Positron
pairs

Nucleosynthesis

Microwave
Background

Galaxy formation

Unification of all 4
forces

E-M/Weak = Strong
forces

universe exponentially
expands by 102

E-M = weak force
creation of nucleons
creation of electrons

light elements formed

recombination -
transparent to photons

bulges and halos of
normal galaxies form

1032 K

1027 K

1027 K

106 K

1083 K

6x10°

10° K
3000 K

20K
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Evolution of the universe

¢ Radius of the Visible Universe —»

Inflation
Quark Soup

WSO O

puodas |

$I89A 000°00E
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.
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=
3
<
o
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Evolution of the universe

¢ Radius of the Visible Universe —»

Inflation
Quark Soup
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Evolution of the universe

~¢— Radius of the Visible Universe —»
Inflation
Quark Soup

Parting Company

$I89A 000°00E

asIaMu 243 Jo aby

> A
- s S

- First Galaxies

—
-]
=
=
o
3
<
)
L
a

SRIA von g SI-2t

?

Need temperatures
around
1.5-1012 K
(200 MeV)
far hotter than center of
the sun (~2:107K)
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Asymptotic freedom vs Debye screening

Asymptotic freedom occurs at very high Q2
Problem: Q% much higher than available in the lab.

So how to create and study this new phase of matter?
Solution: Use effects of Debye screening

In the presence of many colour charges (charge density n), the
short range term of the strong potential is modified:

Charges at long range (r > rp) are screened
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Asymptotic freedom vs Debye screening

Asymptotic freedom occurs at very high Q2
Problem: Q% much higher than available in the lab.

So how to create and study this new phase of matter?
Solution: Use effects of Debye screening

In the presence of many colour charges (charge density n), the
short range term of the strong potential is modified:

1 1 —
Vi(r) « — = —exp[—r]
r T D
1
where "D = 5/n is the Debye radius

Charges at long range (r > rp) are screened
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QED and Debye screening

r<irp

e” separation < e - binding radius
— conductor
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QED and Debye screening

e” separation < e - binding radius
— conductor

L —-—— [—
V=SSP | This is the Mott Transition
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QED and Debye screening

In condensed matter this leads to
an interesting transition

e” separation > e - binding radius
— Insulator

e” separation < e - binding radius
— conductor

L —-—— [—
V=SSP | This is the Mott Transition
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QCD and Debye screening

At low colour densities: @ @ Q
quarks and gluons confined into e&

colour singlets

QB
— hadrons (baryons and mesons) @ 68 @@®
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QCD and Debye screening

At low colour densities:

-
. . o°
quarks and gluons confined into ‘o.. e
. o
colour singlets S T
o
— hadrons (baryons and mesons) D R My o
e O... ® O o
o 00 g 0 °
°* L, ° °

At high colour densities:

guarks and gluons unbound

Debye screening of colour charge ‘ — QGP - colour conductor '
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QCD and Debye screening

At low colour densities:

o
. . o°
quarks and gluons confined into 0,0 e
. o
colour singlets °‘.-'3o %"
o o
— hadrons (baryons and mesons) ¥ f’,"'-..' ° .
0‘0 ‘.. ® ..O’.
o ©®o ‘ [ ]
°* L, ° °

At high colour densities:

guarks and gluons unbound

Debye screening of colour charge ‘ — QGP - colour conductor '

Can create high colour density by heating or compressing

— QGP creation via accelerators or in neutron stars
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What are the necessary conditions?

First Estimation: Phenomenological calculation

The MIT bag model (Bogolioubov (1967)) :

e Hadrons are non-interacting quarks confined within a bag.
* Quarks are massless inside “bag”, infinite mass outside

* Quarks confined within the “bag” but free to move outside

* Confinement modeled by Dirac equation.
(Minside~0, Moutsise~infinity, 6,, = 1 inside the bag and zero outside the bag)

iy 0,1 — My + (M — m)fyp = 0

Wave function vanishes outside of bag, satisfying boundary
conditions at bag surface

hc
With bag radius = R E, = w; E
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MIT bag model

MIT group realized E-p conservation violated

Included an external “bag pressure” balances internal pressure
from quarks.

e.g. nucleon ground state is
3 quarks in 1s,, level

To create this pressure the vacuum
attributed with energy density B

|
he 4 4
E; =w— + —R’B
“ipg T3 —@*—
N~

Boundary condition now: / T
Energy minimized with respect to R B
he 11 R=0.8 fm, 3 quarks
B% — (Zzwz 4 )% R
" B4 = 206 MeV/fm?
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Critical temperature from MIT bag

If u (chemical potential) = O (true for massless quarks):

degene'_r‘sit‘:y factor . 5
E, - 94V p-dp 9V [ 1
g

— o 3
27-‘-2 0 kl -+ ep/ji — 27_‘_2 0 p dp{ Gp/T 1 }
7 Fermi-[;rac distribution T 2 A Bose-Einstein distribution
r E,=q,V—T
By = 59V 5T 9= 997 30

gq = gq-= NchNf - 3X2X2 - 12 gg - 8X2 - 16
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Critical temperature from MIT bag

If u (chemical potential) = O (true for massless quarks):

degeneracy factor

o0 3
94V p°dp Voo |
E, = —— Yy 3
T )y 1er? By =%z | Pl gm—)
7 Fermi-Dirac distribution 7.‘.2 4 Bose-Einstein distribution
0 E,=q,V—T
E,=—g,V—T% 9 = 9g
q 8gq 30 30
dq = gq = NcNsNf = 3x2x2 = 12 gg = 8x2 =16 ;
-
Total energy density is:  €7oT = €4 + 65+ €4 = 37%T4
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Critical temperature from MIT bag

If u (chemical potential) = O (true for massless quarks):

degeneracy factor

E _ Yy 3

T2 Jy 1+4erlT By =%z | Pl gm—)

7 Fermi-Dirac distribution 7T2 4 Bose-Einstein distribution
T E,=q,V—T

E,=—g,V—T% 9 = 9g

q 8gq 30 30
Jdq = 9= NcNsNf = 3x2x2 = 12 gg = 8x2 =16 ;

-

Total energy density is:  €7oT = €4 + 65+ €4 = 37%T4

90
3772

l.e. T > T¢, the pressure in the bag overcomes the bag pressure

P=1/3¢, T. = (——)iB7 B =206 MeV/fm3

T>T.=144 MeV — de-confinement and QGP
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What are the necessary conditions? - Il

Second estimation: Lattice QCD

At large QZ?: coupling small, perturbation theory applicable
At low Q?2: coupling large, analytic solutions not possible,
solve numerically — Lattice QCD

N; x N

Better solutions:
higher number sites
smaller lattice spacing

quarks and gluons can only be placed
on lattice sites

Can only travel along connectors

Cost:
CPU time
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What are the necessary conditions? - Il

Second estimation: Lattice QCD

At large QZ?: coupling small, perturbation theory applicable
At low Q?2: coupling large, analytic solutions not possible,
solve numerically — Lattice QCD

N; x N

al | | | | quarks and gluons can only be placed
o on lattice sites

T 1 1] Can only travel along connectors

Better solutions: Cost:

higher number sites CPU time
smaller lattice spacing

Lattice QCD making contact with experiments:
Proton mass calculated to within 2%
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Lattice QCD at finite temperature

Abelian

Action density in 3 quark system in full QCD
H. Ichie et al., hep-1at/0212036

S — . S — —yi 11
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Lattice QCD at finite temperature

* Coincident transitions: deconfinement and chiral symmetry restoration
« Recently extended to ugz> 0, order still unclear (1%, 274, crossover ?)

e . , . . : : ]
14.0 T eSB/‘l4 3
12.0 |
10.0 ¢
8.0 r
6.0 1
4.0 r
2.0 r
0.0

3 flavour

I /0 IT ——

7 2 fIéQbur

TMe

1.0 1.5 2.0 2.5 3.0 3.5 4.0

TC ~ 170 MeV F. Karsch,
hep-ph/0103314
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Lattice QCD at finite temperature

. G. Schierholz et al.,
Abelian Confinement 2003
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QCD phase diagram of hadronic matter

TA

: Quark-Gluon Plasma

~170 |}

MeV | s . Plasma = ionized gas which is
: Critical Point macroscopically neutral & exhibits
, @ collective effects
' g sually plasmas are e.m., here color forces
2
'S
' Hadron Gas —
By Color
e W 7
. Superconductor
! Vacuum CFL
y‘/ Nuclei A

-

-
Neutron | Stars ? Wbaryon

Crystalline
Color Superconductor
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QCD phase diagram of hadronic matter

Y ¢
: | Quark-Gluon Plasma
v | X Pl ionized hich i
MeV | " . asma = ionized gas which is
: Critical Point \ macroscopically neutral & exhibits
, @ \ collective effects
2 \ sually plasmas are e.m., here color forces
- * \
P D \
' Hadron Gas _—
' 8 \ Color
I LU \ rd
. \ Superconductor
: Vacuum \ CFL
y‘/ Nudlei A
-

-
Neutron | Stars ? Wbaryon

Crystalline
Color Superconductor
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RHIC - a collider

o = -
e b r

’.4‘" T:‘..

RS -y ™ e anl

A |
. -P'HOBOS TANDEMS .

RHIC

A B2 counter-rotating £
=i 5 . beams of ions |

s from p to Au @
WP # s\ =5-500 GeV

e
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RHIC and the LHC

RHIC LHC
Start date 2001 2009
lon Au-Au & p-p Pb-Pb & p-p
Max s 200 GeV 5.5 TeV
Circumference 2 4 miles 17 miles
Depth On surface 175 m below ground
HI Exp. BRAHMS,PHENIX, ALICE, ATLAS, CMS

PHOBOS, STAR

Located BNL, New York, USA | CERN, Geneva, Switzerland
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What we want to measure ...

e Baseline (majority of produced particles)

- K%, nt, m0, p, p

e Strangeness

- Ko, K*, 9, A, E, Z, Q

e Real and Virtual Photons

- Y

- Y —utun, yr—erer

* Heavy Flavor

- DO, D*, D* B

- Ae

* Quarkonia

- J/ll), w’, Y, Y, Y’, Y”

e Jets = high-pTt hadrons in cone

e Decay channels matters too: p—e*e- versus p—n*m
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- K%, nt, m0, p, p

e Strangeness

- Ko, K*, 9, A, E, Z, Q

e Real and Virtual Photons
- Y

- Y =uru, yr—>etes

 And all that over all pt ?
e Acceptance (ideal 4m) ?

* Heavy Flavor e All centralities, multiplicities ?
- DY, D*, D* B * Recording every collision ?
.

e Quarkonia

- J/ll), 11),, Y, Y, Y’, Y”

e Jets = high-prt hadrons in cone

e Decay channels matters too: p—e*e- versus p—n*m
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The perfect detector?

e Momentum p

- magnetic field x length: Bxdl

- high-pt = large Bxdl = small pt tracks curl up

- low-pt = small Bxdl = high pr tracks care straight (pt res. lost)

e Particle ID

- v, € = hadron blind, little material

- hadrons = PID through interaction with material

* Acceptance

- large acceptance = lots of data = slow

- small acceptance = few data = fast

e Energy

- v, € = E.M. Calorimeter

- hadrons = Hadronic Calorimeter

e Heavy flavor ID

- secondary vertices = high precision Si detectors = material

- semileptonic decays (c,b — e + X, B — JAp (— e e) + X) = hadron blind,
little material

Helen Caines -X* UK Summer School - Sept. 2009 )

Wednesday, September 16, 2009



Mission impossible

Question: How to proceed with experimental design when

E (Theoretical Opinion) =0 ?

Helen Caines -XM UK Summer School - Sept. 2009 26

Wednesday, September 16, 2009




Hermeticity

e A key factor in collider detectors
- Goal of essentially complete event reconstruction

- Discovery potential of missing momentum/energy now
well established

- Of course this due to manifestation of new physics via
electroweak decays

* I[n heavy ion physics
- dN_/dy ~ 1000
®» exclusive event reconstruction “unfeasible”

- But
» Seeking to characterize a state of matter

» Large numbers = statistical sampling of phase space a valid
approach

Helen Caines -XVM* UK Summer School - Sept. 2009 27

Wednesday, September 16, 2009



PID — long lifetime (>5 ns)

Examples: m, K, v, p, n, ...
Charge (if any!) and 4-momentum needed for PID

4-momentum from at least two of these quantities:

energy 3-momentum velocity
calorimetry tracking time-of-flight + pathlength
! ! or Cherenkov-effect
(F:ully stop the particle Follow path of charged
onvert its energy to particles in magnetic Ti :
: ime of flight
- light, charge... field — get momentum S 9 t;
Collect and read out from curvature /
Electromagnetic showers _ V — S/(tl'tO)
pt = (g/c)xBxR t,
A . e e e v -+
== v Cherenkov
e R,
gt
s, | R, cos(a) = 1/Ppn
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PID — long lifetime (>5 ns)

Why do | emphasize long lifetime? Because the detectors are
fairly large, and the particle produced at the vertex has to
survive until it reaches the dete S
 AutAu syn = 130 GeV

=

)
A

Example:

hadron identification with
momentum and time-of-flight
measurement

P

1/Momentum [(GeVic)]
N

=)

2}
y axis: inverse of the momentum '
X axis: time-of-flight

10 15 20 25 30 35 40 45 50
Time of Fllghl [ns]

There are many more methods to identify long-lived particles
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PID — short lifetime (<5 ns)

Examples: 70, ¢, A, ...
Have to be reconstructed from
their more stable decay products

Assume you want to measure
the ¢ meson via its p—KK decay
by measuring both kaons and
reconstructing its invariant mass

But what if there are more than 2 kaons
in the event? Or you take a pion for a
kaon? Which two go together?

S = Total - Background
Background could be like-sign pairs or
pairs from different events

Decay Vertex
m2 = (py+ p,)?
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PID — short lifetime (<5 ns)

Examples: n0, ¢, A,

7090 a) AurAu 62 GeV (60-80%) _oaal
Have to be reconstructed from 6000 et
their more stable decay products  so: g™
4000 yf
Assume you want to measure S 3°°°:— r
the @ meson via its ¢—KK decay 2 amwp
by measuring both kaons and g 1ooof f‘
reconstructing its invariant mass 2 1600~ & 08<p, <12 Gevic
c 1400 \ ‘:':: 2 vt 49.91130
W 4200 T4 | o oooeze- oososes
But what if there are more than 2 kaons 12°°H 6> K+K' ;i [» e
in the event? Or you take a pion for a s00L- g !
kaon? Which two go together? 400" £ )
200 .,..-" 7‘.3’_ ib oo
S = Total - Background 20(0, 0‘;’;.‘.:'..'.f?§‘;0 ..................... ;t?!,..;...‘..‘.;‘fs ...o.

Background could be like-sign pairs or

pairs from different events

..........................................

098 099 1 1.01 1.02 103 1.04 1.05 106 1.07

Invariant Mass (GeV/c?)

Helen Caines -XUM UK Summer School - Sept. 2009

Wednesday, September 16, 2009




PID - very short lifetime in <1 mm

Here DY— K 7t (ct = 123 um)

* Brute force method

— select K and & tracks
— combine all pairs from same events = signal+background

— combine all pairs from different events = background
— subtract background from signal+background = signal

.1-0’} ---------------------- X1I 0? T I T T T I T T T I T T T
2500 |- I—— 5000 L « _
Signa+Background B ‘! u<_ K'© ]
2000 Background 4000/ ¢ ° ~
i 3 :
1800 3000} 0.. -
32 e i
Lo ° _
1000 2000 % ]
. 3 ’
- 3 D° ]
500 1000 —
, ’

oj L | TR T R PN T T T ) - —4-. 0 L
1 1.5 2 25 3 35 C | | | | |
K= Inv Mass (GeVic') 06 08 1 12 1.4 16 1.8 2 22

Kz Inv. Mass (GeV/cz)
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PID - very short lifetime in <1 mm

Here DY— K 7t (ct = 123 um)

* Brute force method

— select K and & tracks
— combine all pairs from same events = signal+background

— combine all pairs from different events = background
— subtract background from signal+background = signal

x10° 24 n
5000 ﬁl ! ' ] . Ng d+Au /sy =200GeV
- J Mp— K" 1 Residual =
40008 ¥ 7 background =5
Y H ] t o
| @ ° _ no I
| ® ° | — ~ I
3000:: \ 1 eliminated. \‘rc_p_?
. % 1 Needs x
2000 % — <
- by - 1 further work ®
- . . c
10001 1 togettofinal 34|
- 4 spectra .... O
o
:I 1 1 | 1 1 1 | 1 1 1 1 1 1 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 0
0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

Kx Inv. Mass (GeV/c’)
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Design guidelines for QGP detection

Big Plan:

e Consistent framework for describing most of the observed
phenomena

* Avoid single-signal detectors

e “Specialized” detectors but keep considerable overlap for
comparison and cross-checks

* Expect the unexpected
» Preserve high-rate and triggering capabilities
» Maintain flexibility as long as $’s allow

Design Questions (years of sweat, discussion, and simulations)
 What measuring techniques do you want to use?
e What technologies (detectors) fit your goals, constraints?
* Figure out how to combine them
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RHIC experiments in a nutshell

" small experiment - 2 spectrometer arms
BRAHMS ' tiny acceptance Ad, An, measures pr, has PID
movable arms = large An coverage

5 small experiment - “tabletop”
HOB-S (i) huge acceptance A¢, An, no ptinfo, no PID
(if) small acceptance = very low - low pTt, moderate PID

~— large experiment - 2 central arms + 2 muon arms
PH ENIX moderate acceptance central arms: A¢p = nt, An = = 0.35

leptons (muons in forward arms), photons, hadrons

large experiment
*AR large acceptance (barrel): A = 2%, Ay = + 1 + forward
hadrons, jets, leptons, photons
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RHIC - the two “small” experiments

BRAHMS
2 “Conventional” Spectrometers
Magnets, Tracking Chambers, TOF,
RICH, ~40 Participants

H2TS

T4 Forwarg Specirometer
23<e<%

Multiplic ity

Beoam Beam counters

Mid Ropicity Spectrometer \ \ 3:” magnets
3 <9<95 ‘\

\®

* Inclusive Particle Production Over Large
Rapidity Range

PHOBOS
“Table-top” 2 Arm Spectrometer
Magnet, Si u-Strips, Si Multiplicity
Rings, TOF, ~80 Participants

Paddle Trigger Counter

TOF

Spectrometer

Ring Counters Octagon+Vertex

» Charged Hadrons in Select Solid Angle
« Multiplicity in 4x
* Particle Correlations

Helen Caines -XV* UK Summer School - Sept. 2009 34

Wednesday, September 16, 2009




RHIC - the two ‘large” experiments
PHENIX

Axial Field
High Resolution & Rates
2 Central Arms, 2 Forward Arms
TEC, RICH, EM Cal, Si, TOF, u-ID
~450 Participants

STAR

Solenoidal field
Large-Q Tracking
TPC’s, Si-Vertex Tracking
RICH, EM Cal, TOF
~420 Participants

Silimf\ Vertex
h';”ﬂ dracker

C?ib

E<M
Calorimeter

Time jection
e o eber

st

/ Forward Time Projection Chamber %

« Measurements of Hadronic Observables

using a Large Acceptance
* Event-by-Event Analyses of Hadrons and

* Leptons, Photons, and Hadrons in Selected

Solid Angles
« Simultaneous Detection of Various Phase

Transition Phenomena

Jets, Forward physics, Leptons, Photons
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