Studying a new Phase of Matter -An introduction to the Quark Gluon Plasma and Relativistic Heavy Ion Physics

How to make a QGP

RHI Physics - Leicester - U.K.

Helen Caines - Yale University

September 2009

Studying a new Phase of Matter -An introduction to the Quark Gluon Plasma and Relativistic Heavy Ion Physics

How to make a QGP

Soft physics and the QGP

RHI Physics - Leicester - U.K

Helen Caines - Yale University

September 2009

Studying a new Phase of Matter -An introduction to the Quark Gluon Plasma and Relativistic Heavy Ion Physics

How to make a QGP

Soft physics and the QGP

Hard physics and the QGP

RHI Physics - Leicester - U.K

Helen Caines - Yale University

September 2009

Soft and hard physics????

Soft and hard physics????

Soft physics - bulk of particles produced sit below 2 GeV/c phenomenology needed to describe data

Hard physics - calculable via pQCD

Relativistic Heavy Ions I -Why, Where, and How

RHI Physics Leicester - U.K

Helen Caines - Yale University September 2009 Outline : QCD and Asymptotic Freedom The Quark Gluon Plasma The Accelerators The Experiments

A brief history of RHI

1973: Gross, Wilczek and Politzer: Asymptotic freedom of QCD

1974: Workshop on "BeV/nucleon collisions of heavy ions" at Bear Mountain, NY - turning point in bringing HI physics to the forefront as a research tool

Driving Question: "Is the vacuum a medium whose properties one can change?"

"We should investigate.... phenomena by distributing energy of high nucleon density of a relatively large volume" T.D.Lee

Note: At this point the idea of quarks as the ultimate state of matter at high energy density has not yet taken hold

A brief history of RHI - II

1975: Collins and Perry - EoS of matter needed to set upper limit on the maximum mass of a neutron star

Crucial realization: ultra-high T & baryon density corresponds to QCD asymptotic regime, no longer hadronic. State would be a weakly interacting "Quark Soup"

1978: Shuryak coined the term "Quark Gluon Plasma"

1984: SPS starts, Pb-Pb at $\sqrt{s_{NN}}$ = 9-17.3 GeV (end 2003)

1986: AGS starts, S-S up to at $\sqrt{s_{NN}}$ = 7.6 GeV (end 2000)

2000: RHIC starts, Au-Au at $\sqrt{s_{NN}}$ = 200 GeV

2010: LHC starts, Pb-Pb at $\sqrt{s_{NN}} = 5.5 \text{ TeV}$

The standard model

Quantum field theory that unifies our understanding of 3 out of the 4 fundamental forces:

electromagnetic, weak, strong gravity understood classically but no QFT to date

Describes interactions of quarks and leptons through exchange of force particles - gauge bosons

So far all experiments have been consistent with Standard model predictions

Does not describe:

All fundamental interactions - gravitation missing (+dark matter and dark energy) Mass of the neutrinos (but simple extensions do)

QCD - Gross, Politzer, Wilczek - 1973

PHYSICAL REVIEW D	VOLUME #, NUMBER 10	15 NOVEMBER 1973	VOLUME 30, NUMBER 26	PHYSICAL RE	VIEW LETTERS	25 JUNE 1973
А	symptotically Free Gauge Theories. It	0				
National Acc and Joseph Renvy	David J. Geosa ¹ celevator Laboratory, P. O. Box 500, Batavia, III Laboratories, Princeton University, Princeton, 1	imola 80530 Yuru Jarney 88540	Reli	able Perturbative Resu	Its for Strong Interactions?*	
Frank Wilczek			H. David Politzer			
Joseph Henry Laboratories, Princeton University, Princeton, New Jersey (8546) (Received 23 July 1973)			Jefferson Physical Laboratories, Harvard University, Cambridge, Massachusetts 02138 (Received 3 May 1973)			
Asymptotically free gauge theories of the strong interactions are constructed and analyzed. The reasons for doing this are reconstruct, including a review of renormalization-group pathons are derived for Yang-Mills theories. The parameters that enter into the equations are calculated to lowest order and it is shown that these theories are asymptotically free. More specifically the affective coupling constant, which determines the ultraviolet behavior of the theory, vanishes for large spacelike momenta. Fernious are incorporated and the constructions of realistic models is discussed. We propose that the strong interactions he mediated behavior of the theory, vanishes for large spacelike momenta. Fernions are incorporated and the constructions of realistic models is discussed. We propose that the strong interactions he mediated behavior of gauge group which commutes with SU(3) × SU(3). The problem of spannetry breaking is discussed. It appears likely that this would have a dynamical origin. It is suggested that the gauge systemetry might not be broken and that the server infrared singularities prevent the econstructions that analishing constants. The deep instants of structure functions, as well as the electron-positron total analishation cross section are analyzed. Scaling obtains up to calculable logarithmic corrections, and the maive light-cons or parton-model results follow. The problem of incorporating scalar mesons and breaking the spannetry by the Higgs mechanism are explained in detail.			An explicit calculation shows perturbation theory to be arbitrarily good for the deep Eaclidean Green's functions of any Yang-Mills theory and of many Yang-Mills theories with fermions. Under the hypothesis that spontaneous symmetry breakdown is of dynami- cal origin, these symmetric Green's functions are the asymptotic forms of the physical- ly significant spontaneously broken solution, whose coupling could be strong. Renormalization-group techniques hold great promise for studying short-distance and strong- coupling problems in field theory. ^{1,2} Symanzik ² p ² divergence represents a real breakdown of			

Quantum Chromodynamics:

- theory of strong force
- quarks and gluons fundamental constituents
- gluons force carriers self interacting (unlike photons in QED)

Quarks in the human body represent only ~2% of total mass. Rest from strong interaction via chiral symmetry breaking

α_s ≈ 1

Force = const 3 colour charges: red, blue, green Gauge boson: g (8) Charged?: Yes

self interaction

 $\alpha_{\rm em} = e^2/4\pi \approx 1/137$

no self interaction

Comparing theories

Force = const 3 colour charges: red, blue, green Gauge boson: g (8) Charged?: Yes

self interaction

$$\alpha_{\rm em} = e^2/4\pi \approx 1/137$$

no self interaction

Comparing theories

Force = const 3 colour charges: red, blue, green Gauge boson: g (8) Charged?: Yes

self interaction

$\alpha_{\rm em} = e^2/4\pi \approx 1/137$

Force = 1/r² 2 charges: +, -Gauge boson: γ (1) Charged?: No

no self interaction

Comparing theories

$$\frac{\text{QCD}}{V_s(r)} = -\frac{4}{3}\frac{\alpha_s}{r} + kr$$
$$\alpha_s \approx 1$$

Force = const 3 colour charges: red, blue, green Gauge boson: g (8) Charged?: Yes

self interaction

 $\frac{\mathsf{QED}}{V_{em}(r)} = -\frac{q_1 q_2}{4\pi\epsilon_0 r} = -\frac{\alpha_{em}}{r}$ $\alpha_{em} = e^2/4\pi \approx 1/137$

Force = 1/r² 2 charges:

+,-Gauge boson: γ (1) Charged?: No

no self interaction

Confinement: fundamental & crucial feature of strong interaction force = const has significant consequences

Confinement: fundamental & crucial feature of strong interaction force = const has significant consequences

Confinement: fundamental & crucial feature of strong interaction force = const has significant consequences

> Strong color field Force *grows* with separation !!!

Confinement: fundamental & crucial feature of strong interaction force = const has significant consequences

Confinement: fundamental & crucial feature of strong interaction force = const has significant consequences

Confinement: fundamental & crucial feature of strong interaction force = const has significant consequences

To understand the strong force and confinement: Create and study a system of deconfined colored quarks and gluons

We don't see free quarks

The size of a nucleus is 1.2A^{1/3} quark fm where A is the mass number and a fm is 10⁻¹⁵ m

We don't see free quarks

We don't see free quarks

Compare to gravitational force at Earth's surface

$$F = 1.6 \times 10^5 N = M \times g = M \times 9.8 m/s^2$$
$$\longrightarrow M = 16,300 kg$$

Quarks exert 16 metric tons of force on each other!

Asymptotic freedom

Stated Coupling Constants are "constant" 1 - not true Runs with Q² (mtm transfer) accounts for vacuum polarisation

$$\begin{aligned} \alpha_s(Q^2) &= \frac{\alpha_s(\mu^2)}{[1 + (\alpha_s(\mu^2)\frac{(33 - 2n_f)}{12\pi})ln(Q^2/\mu^2)]} \\ \alpha_s(\mu^2) &\sim 1 \text{ !!} \\ \mu^2 \text{: renormalization scale} \\ 33 \text{: gluon contribution} \\ n_f \text{: } \# \text{ quark flavours} \end{aligned}$$

Asymptotic freedom Stated Coupling Constants are "constant" 1 - not true Running measured Runs with Q² (mtm transfer) experimentally accounts for vacuum polarisation 0.5 Theory $\alpha_{s}(\mathbf{Q})$ Data $\frac{\alpha_s(\mu^2)}{[1 + (\alpha_s(\mu^2)\frac{(33 - 2n_f)}{12\pi})ln(Q^2/\mu^2]}$ $\alpha_s(Q^2) =$ Deep Inelastic Scattering e⁺e^{*} Annihilation Hadron Collisions Heavy Quarkonia $\alpha_{s}(\mu^{2}) \sim 1 !!$ μ^2 : renormalization scale 0.3 OCE 33: gluon contribution nf: # quark flavours 0.2 0.1 10 100 Q [GeV 0.2 fm 0.02 fm 0.002 fm

Asymptotic freedom

10 ⁻⁴⁴ sec	Quantum Gravity	Unification of all 4 forces	10 ³² K
10 ⁻³⁵ sec	Grand Unification	E-M/Weak = Strong forces	10 ²⁷ K
10 ⁻³⁵ sec ?	Inflation	universe exponentially expands by 10 ²⁶	10 ²⁷ K
2 10 ⁻¹⁰ sec	Electroweak unification	E-M = weak force	10 ¹⁵ K
2·10 ⁻⁶ sec	Proton- Antiproton pairs	creation of nucleons	10 ¹³ K
6 sec	Electron-Positron pairs	creation of electrons	6x10 ⁹ K
3 min	Nucleosynthesis	light elements formed	10 ⁹ K
10 ⁶ yrs	Microwave Background	recombination - transparent to photons	3000 K
10 ⁹ yrs ?	Galaxy formation	bulges and halos of normal galaxies form	20 K

Wednesday, September 16, 2009

The universe gets cooler !

Helen Caines -XVth UK Summer School - Sept. 2009 12

Wednesday, September 16, 2009

Reheating Matter ?

Helen Caines -XVth UK Summer School - Sept. 2009 12

Wednesday, September 16, 2009

Wednesday, September 16, 2009

Asymptotic freedom vs Debye screening

Asymptotic freedom occurs at very high Q² Problem: Q² much higher than available in the lab.

So how to create and study this new phase of matter? Solution: Use effects of Debye screening

In the presence of many colour charges (charge density n), the short range term of the strong potential is modified:

Charges at long range $(r > r_D)$ are screened

Asymptotic freedom vs Debye screening

Asymptotic freedom occurs at very high Q² Problem: Q² much higher than available in the lab.

So how to create and study this new phase of matter? Solution: Use effects of Debye screening

In the presence of many colour charges (charge density n), the short range term of the strong potential is modified:

$$V_s(r) \propto rac{1}{r} \Longrightarrow rac{1}{r} exp[rac{-r}{r_D}]$$

where $r_D = rac{1}{\sqrt{n}}$ is the Debye radius

Charges at long range $(r > r_D)$ are screened

QED and Debye screening

 $r > r_D$

e⁻ separation < e ⁻ binding radius → conductor

QED and Debye screening

 $r > r_D$

e⁻ separation < e⁻ binding radius → conductor

This is the Mott Transition

QED and Debye screening

 $r > r_D$

In condensed matter this leads to an interesting transition

e⁻ separation > e⁻ binding radius → insulator

 $r < r_D$

e⁻ separation < e⁻ binding radius → conductor

This is the Mott Transition

QCD and Debye screening

At low colour densities:

quarks and gluons confined into colour singlets

 \rightarrow hadrons (baryons and mesons)

QCD and Debye screening

At low colour densities:

quarks and gluons confined into
colour singlets
→ hadrons (baryons and mesons)

At high colour densities:

quarks and gluons unbound Debye screening of colour charge

 \rightarrow QGP - colour conductor

QCD and Debye screening

At low colour densities:

quarks and gluons confined into colour singlets → hadrons (baryons and mesons)

At high colour densities:

quarks and gluons unbound Debye screening of colour charge

 \rightarrow QGP - colour conductor

Can create high colour density by heating or compressing

 \rightarrow QGP creation via accelerators or in neutron stars

What are the necessary conditions?

First Estimation: Phenomenological calculation

The MIT bag model (Bogolioubov (1967)) :

- Hadrons are non-interacting quarks confined within a bag.
- Quarks are massless inside "bag", infinite mass outside
- Quarks confined within the "bag" but free to move outside
- Confinement modeled by Dirac equation.

(m_{inside}~0, M_{outside}~infinity, $\theta_V = 1$ inside the bag and zero outside the bag)

$$i\gamma^{\mu}\partial_{\mu}\psi - M\psi + (M-m)\theta_{V}\psi = 0$$

Wave function vanishes outside of bag, satisfying boundary conditions at bag surface

$$E_i = \omega_i \frac{\hbar c}{R}$$

MIT bag model

MIT group realized E-p conservation violated

Included an external "bag pressure" balances internal pressure from quarks.

To create this pressure the vacuum attributed with energy density B

$$E_i = \omega_i \frac{nc}{R} + \frac{4\pi}{3} R^3 B$$

H A

Boundary condition now: Energy minimized with respect to R

$$B^{\frac{1}{4}} = \left(\Sigma_i \omega_i \frac{\hbar c}{4\pi}\right)^{\frac{1}{4}} \frac{1}{R}$$

e.g. nucleon ground state is 3 quarks in 1s_{1/2} level

Critical temperature from MIT bag

If μ (chemical potential) = 0 (true for massless quarks):

$$\begin{split} E_g &= \frac{g_g V}{2\pi^2} \int_0^\infty p^3 dp \{\frac{1}{e^{p/T} - 1}\} \\ E_g &= g_g V \frac{\pi^2}{30} T^4 \end{split} \text{Bose-Einstein distribution}$$

 $g_q = g_q = N_c N_s N_f = 3x2x2 = 12$

 $g_g = 8x2 = 16$

Critical temperature from MIT bag

If μ (chemical potential) = 0 (true for massless quarks):

Critical temperature from MIT bag

If μ (chemical potential) = 0 (true for massless quarks):

i.e. $T > T_c$, the pressure in the bag overcomes the bag pressure

T>T_c=144 MeV \rightarrow de-confinement and QGP

What are the necessary conditions? - II

Second estimation: Lattice QCD

At large Q²: coupling small, perturbation theory applicable

At low Q^2 : coupling large, analytic solutions not possible, solve numerically \rightarrow Lattice QCD

quarks and gluons can only be placed on lattice sites

Can only travel along connectors

Better solutions:

higher number sites smaller lattice spacing

Cost: CPU time

What are the necessary conditions? - II

Second estimation: Lattice QCD

At large Q²: coupling small, perturbation theory applicable

At low Q^2 : coupling large, analytic solutions not possible, solve numerically \rightarrow Lattice QCD

quarks and gluons can only be placed on lattice sites

Can only travel along connectors

Better solutions:

higher number sites smaller lattice spacing

Cost: CPU time

Lattice QCD making contact with experiments:

Proton mass calculated to within 2%

Lattice QCD at finite temperature

20

Wednesday, September 16, 2009

Lattice QCD at finite temperature

- Coincident transitions: deconfinement and chiral symmetry restoration
- Recently extended to $\mu_{\rm B} > 0$, order still unclear (1st, 2nd, crossover ?)

20

Wednesday, September 16, 2009

Lattice QCD at finite temperature

Wednesday, September 16, 2009

Abelian

QCD phase diagram of hadronic matter

QCD phase diagram of hadronic matter

RHIC - a collider

RHIC - a collider

RHIC and the LHC

	RHIC	LHC
Start date	2001	2009
lon	Au-Au & p-p	Pb-Pb & p-p
Max √s	200 GeV	5.5 TeV
Circumference	2.4 miles	17 miles
Depth	On surface	175 m below ground
HI Exp.	BRAHMS,PHENIX, PHOBOS, STAR	ALICE, ATLAS, CMS
Located	BNL, New York, USA	CERN, Geneva, Switzerland

What we want to measure ...

- **Baseline** (majority of produced particles)
- K[±], π^{\pm} , π^{0} , p, \overline{p}
- Strangeness
- $K^{0}s, K^{*}, \phi, \Lambda, \Xi, \Sigma, \Omega$
- Real and Virtual Photons
- γ
- $\gamma^* \rightarrow \mu^+ \mu^-, \gamma^* \rightarrow e^+ e^-$
- Heavy Flavor
- D⁰, D*, D[±], B
- /_c
- Quarkonia
- J/ ψ , ψ' , χ_c , Υ , Υ' , Υ''
- Jets \Rightarrow high-p_T hadrons in cone
- Decay channels matters too: $\rho \rightarrow e^+e^-$ versus $\rho \rightarrow \pi^+\pi^-$

What we want to measure ...

- Baseline (majority of produced particles)
- K[±], π^{\pm} , π^{0} , p, \overline{p}
- Strangeness
- K^{0} s, K^{*} , ϕ , Λ , Ξ , Σ , Ω
- Real and Virtual Photons
- γ - $\gamma^* \rightarrow \mu^+ \mu^-, \gamma^* \rightarrow e^+ e^-$
- Heavy Flavor
- D⁰, D^{*}, D[±], B
- Λ_c
- Quarkonia
- J/ ψ , ψ' , χ_c , Υ , Υ' , Υ''
- Jets \Rightarrow high-p_T hadrons in cone
- Decay channels matters too: $\rho \rightarrow e^+e^-$ versus $\rho \rightarrow \pi^+\pi^-$

- And all that over all pT ?
- Acceptance (ideal 4π)?
- All centralities, multiplicities ?
- Recording every collision ?

The perfect detector?

- Momentum **p**
- magnetic field × length: B×dl
- high-pt ⇒ large B×dl ⇒ small p_T tracks curl up
- low-pt \Rightarrow small B×dl \Rightarrow high p_T tracks care straight (p_T res. lost)
- Particle ID
- γ , e \Rightarrow hadron blind, little material
- hadrons ⇒ PID through interaction with material
- Acceptance
- large acceptance \Rightarrow lots of data \Rightarrow slow
- small acceptance \Rightarrow few data \Rightarrow fast
- Energy
- γ , e \Rightarrow E.M. Calorimeter
- hadrons ⇒ Hadronic Calorimeter
- Heavy flavor ID
- secondary vertices ⇒ high precision Si detectors = material
- semileptonic decays (c, b \rightarrow e + X, B \rightarrow J/ ψ (\rightarrow e e) + X) \Rightarrow hadron blind, little material

Mission impossible

Question: How to proceed with experimental design when

Hermeticity

- A key factor in collider detectors
- Goal of essentially complete event reconstruction
- Discovery potential of missing momentum/energy now well established
- Of course this due to manifestation of new physics via electroweak decays
- In heavy ion physics
- $dN_{ch}/dy \sim 1000$
- exclusive event reconstruction "unfeasible"
- But
 - Seeking to characterize a state of <u>matter</u>

PID – long lifetime (>5 ns)

Wednesday, September 16, 2009

PID – long lifetime (>5 ns)

Why do I emphasize long lifetime? Because the detectors are fairly large, and the particle produced at the vertex has to survive until it reaches the deter PHENIX EMC TOF

Example: hadron identification with momentum and time-of-flight measurement

y axis: inverse of the momentum x axis: time-of-flight

1/Momentum [(GeV/c)⁻¹ π^+ р π^{-} -6

There are many more methods to identify long-lived particles

Helen Caines -XVth UK Summer School - Sept. 2009

 $Au+Au\sqrt{s_{NN}} = 130 \text{ GeV}$

Time of Flight [ns]

PID – short lifetime (<5 ns)

Examples: π^0 , ϕ , Λ , ...

Have to be reconstructed from their more stable decay products

Assume you want to measure the ϕ meson via its $\phi \rightarrow KK$ decay by measuring both kaons and reconstructing its invariant mass

But what if there are more than 2 kaons in the event? Or you take a pion for a kaon? Which two go together?

S = Total - Background Background could be like-sign pairs or pairs from different events

PID – short lifetime (<5 ns)

Examples: π^0 , ϕ , Λ , ...

Have to be reconstructed from their more stable decay products

Assume you want to measure the ϕ meson via its $\phi \rightarrow KK$ decay by measuring both kaons and reconstructing its invariant mass

But what if there are more than 2 kaons in the event? Or you take a pion for a kaon? Which two go together?

S = Total - Background Background could be like-sign pairs or pairs from different events

PID - very short lifetime in <1 mm

Here $D^0 \rightarrow K \pi (c\tau = 123 \ \mu m)$

- Brute force method
 - select K and π tracks
 - combine all pairs from same events \Rightarrow signal+background
 - combine all pairs from different events \Rightarrow background
 - subtract background from signal+background \Rightarrow signal

PID - very short lifetime in <1 mm

Here $D^0 \rightarrow K \pi (c\tau = 123 \ \mu m)$

- Brute force method
 - select K and π tracks
 - combine all pairs from same events \Rightarrow signal+background
 - combine all pairs from different events \Rightarrow background
 - subtract background from signal+background \Rightarrow signal

Wednesday, September 16, 2009

Design guidelines for QGP detection

Big Plan:

- Consistent framework for describing most of the observed phenomena
- Avoid single-signal detectors
- "Specialized" detectors but keep considerable overlap for comparison and cross-checks
- Expect the unexpected
 - Preserve high-rate and triggering capabilities
 - Maintain flexibility as long as \$'s allow

Design Questions (years of sweat, discussion, and simulations)

- What measuring techniques do you want to use?
- What technologies (detectors) fit your goals, constraints?
- Figure out how to combine them

RHIC experiments in a nutshell

small experiment - 2 spectrometer arms tiny acceptance $\Delta \phi$, $\Delta \eta$, measures p_T, has PID movable arms \Rightarrow large $\Delta \eta$ coverage

small experiment - "tabletop" (i) huge acceptance $\Delta \phi$, $\Delta \eta$, no p_T info, no PID (ii) small acceptance \Rightarrow very low - low p_T, moderate PID

large experiment - 2 central arms + 2 muon arms moderate acceptance central arms: $\Delta \phi = \pi$, $\Delta \eta = \pm 0.35$ leptons (muons in forward arms), photons, hadrons

large experiment large acceptance (barrel): $\Delta \phi = 2\pi$, $\Delta \eta = \pm 1 +$ forward hadrons, jets, leptons, photons

RHIC experiments in a nutshell

small experiment - 2 spectrometer arms tiny acceptance $\Delta \phi$, $\Delta \eta$, measures p_T, has PID movable arms \Rightarrow large $\Delta \eta$ coverage

small experiment - "tabletop" (i) huge acceptance $\Delta \phi$, $\Delta \eta$, no p_T info, no PID (ii) small acceptance \Rightarrow very low - low p_T, moderate PID

large experiment - 2 central arms + 2 muon arms moderate acceptance central arms: $\Delta \phi = \pi$, $\Delta \eta = \pm 0.35$ leptons (muons in forward arms), photons, hadrons

large experiment large acceptance (barrel): $\Delta \phi = 2\pi$, $\Delta \eta = \pm 1 +$ forward hadrons, jets, leptons, photons

RHIC experiments in a nutshell

small experiment - 2 spectrometer arms tiny acceptance $\Delta \phi$, $\Delta \eta$, measures p_T, has PID movable arms \Rightarrow large $\Delta \eta$ coverage

small experiment - "tabletop" (i) huge acceptance $\Delta \phi$, $\Delta \eta$, no p_T info, no PID (ii) small acceptance \Rightarrow very low - low p_T, moderate PID

large experiment - 2 central arms + 2 muon arms moderate acceptance central arms: $\Delta \phi = \pi$, $\Delta \eta = \pm 0.35$ leptons (muons in forward arms), photons, hadrons

large experiment large acceptance (barrel): $\Delta \phi = 2\pi$, $\Delta \eta = \pm 1 +$ forward hadrons, jets, leptons, photons

RHIC - the two "small" experiments

<u>BRAHMS</u> 2 "Conventional" Spectrometers Magnets, Tracking Chambers, TOF, RICH, ~40 Participants <u>PHOBOS</u> "Table-top" 2 Arm Spectrometer Magnet, Si μ-Strips, Si Multiplicity Rings, TOF, ~80 Participants

• Inclusive Particle Production Over Large Rapidity Range

- Multiplicity in 4π
- Particle Correlations

RHIC - the two "large" experiments

PHENIX <u>STAR</u> **Axial Field** Solenoidal field **High Resolution & Rates** Large- Ω Tracking 2 Central Arms, 2 Forward Arms **TPC's, Si-Vertex Tracking** TEC, RICH, EM Cal, Si, TOF, μ-ID **RICH, EM Cal, TOF** ~450 Participants ~420 Participants Silicon Vertex Coils Magnet MUON CENTRES ←E-M Calorimeter Time Projection MLICH TRIACH Time Of Flight Electronics ELECTROMAGNETIC CALORIAETER Forward Time Projection Chamber

- Measurements of Hadronic Observables using a Large Acceptance
- Event-by-Event Analyses of Hadrons and Jets, Forward physics, Leptons, Photons

 Leptons, Photons, and Hadrons in Selected Solid Angles

ME OF FLIG

CHERENHOV DEPENDING

 Simultaneous Detection of Various Phase Transition Phenomena