RHIC and the QGP at 10: from the "age of discovery" to the "age of exploration"

> QCHS IX Madrid - August 2010 Helen Caines - Yale University

"The beginning of knowledge is the discovery of something we do not understand" - Frank Herbert

"Birthday" celebrations at BNL

Marking Important BNL Science Milestones

James Cronin Nobel Prize -1980

with Val Fitch : proved that K decays break fundamental symmetries

Ernest Courant 90th Birthday

helped formulate the concept of "strong focusing" accelerators

Samuel C.C. Ting Nobel Prize -1976

with Burton Richter : discovered the J/Ψ

RHIC NYT headlines from the past decade Just What Does Happen When 'Worlds' Collide? May 2000 A Coming-Out Party for a Particle Collider Jan 2001 Gauging a Collider's Odds of Creating a Black Hole - April 2008 **Trying to Cook a Soup of Free-Range Quarks Jan 2001** In Lab's High-Speed Collisions, Things Just Vanish March 2005 **One Trillion Degrees, Even Gold Turns Into the Sloshiest Liquid** April 2005 Getting the Most Bang Out of Quarks and Gluon May 2007 **Experiments on Dense Matter Evoke Big Bang** Jan 2001 In a Lab on Long Island, a Visit to the Big Bang Jan 2003 In Brookhaven Collider, Scientists Briefly Break a Law of Nature Feb 2010 Nuclear Physics: Not Just for Men - May 2007 **Scientists Deciphering Atomic Forces Report Hottest, Densest** Matter Ever Observed June 2003 **Digging Ourselves a Black Hole** August 2008

Initial conditions at RHIC - CGC

Gluon density increases with decreasing x Can't grow continuously must saturate

CGC - Color Glass Condensate

semi-classical effective field theory for low-x gluons in nuclei saturation of gluons at low x

Gluons (color) with long evolution time scales (glass) and high occupation numbers (condensate)

Incoherent sum of partons $(A^*proton) \rightarrow thin wall of coherent gluons randomly distributed$

Predicted to occur at low x $(10^{-3}) \rightarrow$ forward y at RHIC

expected to select central d+Au collisions.

Early conditions at RHIC - ε

Early conditions at RHIC - ε

Early conditions at RHIC - T

Direct Photons:

- no charge or color \rightarrow don't interact with medium
- emitted over all lifetime → convolution of all T

Helen Caines - HPCSS - August 2010

Early conditions at RHIC - T

Au-Au: After background subtraction spectrum well fit by:

 T_{AA} scaled p+p + Exp

Early conditions at RHIC - T

Au-Au: After background subtraction spectrum well fit by:

T_{AA} scaled p+p + Exp

Emission rate and shape consistent with that from a hot thermally equilibrated medium

> T = 300 - 600 MeV > 2* T_C т < 1 fm/c

First experimental observation of $T > T_c$

Flowing like a "Perfect" liquid

Flowing like a "Perfect" liquid

Flowing like a "Perfect" liquid

How perfect is the "Perfect fluid"

Viscosity

$$\eta \sim n\bar{p}\lambda$$

 $= n\bar{p}\frac{1}{n\sigma} = \frac{\bar{p}}{\sigma}$

- small $\eta \rightarrow$ large coupling
- String theory (AdS/CFT) predicts a lower bound:

$$\frac{\eta}{s} \geq \frac{\hbar}{4\pi}$$

The Shear Viscosity of Strongly Coupled N=4 Supersymmetric Yang-Mills Plasma G. Policasto, D.T. Son, A.O. Starinets PRL 87: 081601 (2001). water under normal condition $\eta/s \sim 380 \hbar/4\pi$

How perfect is the "Perfect fluid"

Viscosity

$$\eta \sim n\bar{p}\lambda$$

 $= n\bar{p}\frac{1}{n\sigma} = \frac{\bar{p}}{\sigma}$

- small $\eta \rightarrow$ large coupling
- String theory (AdS/CFT) predicts a lower bound:

$$\frac{\eta}{s} \geq \frac{\hbar}{4\pi}$$

The Shear Viscosity of Strongly Coupled N=4 Supersymmetric Yang-Mills Plasma G. Policasto, D.T. Son, A.O. Starinets PRL 87: 081601 (2001).

ALL results close to the limit

Many ways have been devised to extract n/s from data

$QGP \rightarrow sQGP$

There are partonic degrees of freedom

- Elliptic flow is additive.
- If partons are flowing the complicated observed flow pattern in $v_2(p_T)$ for hadrons

 $\frac{d^2 N}{dp_T d\phi} \propto 1 + 2 v_2(p_T) \cos(2\phi)$

should become simple at the quark level $p_T \rightarrow p_T/n$

$$v_2 \rightarrow v_2 / n$$
 ,

n = (2, 3) for (meson, baryon)

12

There are partonic degrees of freedom

- Elliptic flow is additive.
- If partons are flowing the complicated observed flow pattern in $v_2(p_T)$ for hadrons

 $\frac{d^2 N}{dp_T d\phi} \propto 1 + 2 v_2(p_T) \cos(2\phi)$

should become simple at the quark level $p_T \rightarrow p_T/n$

$$v_2 \rightarrow v_2 / n$$
 ,

n = (2, 3) for (meson, baryon)

Works for p,
$$\pi$$
, K⁰_s, Λ , Ξ ..

 $v_2^{s} \sim v_2^{u,d} \sim 7\%$

Constituents of QGP are partons

Summary of first decade of RHIC - I

 Energy density in the collision region is way above that where hadrons can exist

• The initial temperature in the collision region is way above that where hadrons can exist

• The medium has quark and gluon degrees of freedom in initial stages

We have created a new state of matter at RHIC - the sQGP

• A sQGP: flows like an almost "perfect" liquid interacts strongly with partons passing through it

RHIC: the Beam Energy Scan

RHIC such a versatile machine need to make good use of it

Lattice QCD predicts: • High T & Low μ_B Cross-over • High μ_B & Low T -1st order transition • Mid μ_B & Mid T -Critical Point Evidence of a critical point and/ or 1st order phase transition?

What \sqrt{s} does sQGP "turn off"?

14

RHIC: the Beam Energy Scan

quark (color triplets)

γ*, Z: colorless

γ: colorless

QQ: color singlet/octet

Probing for the QGP

p-p - No QGP, baseline measure d-A - No QGP, initial state effects A-A - QGP created

Nuclear modification factor:

 $R_{AA}(p_T) = \frac{Yield(A+A)}{Yield(p+p) \times \langle N_{coll} \rangle}$

Ave. no of p-p collisions in A-A collision d-A: Cronin enhancement A-A: High p_T suppression

Away-side di-hadron correlations: d-A: p-p like A-A: Strong suppression

Clean separation of initial state (d-Au) and QGP (Au-Au) effects

Observations at RHIC:

1. Photons not suppressed

- Good! γ don't interact with medium
- N_{coll} scaling works

Observations at RHIC:

- 1. Photons not suppressed
 - Good! γ don't interact with medium
 - N_{coll} scaling works
- 2. Hadrons suppressed in central Au-Au
 - R_{AA} factor 5 suppression
 - Away-side jet highly quenched

Observations at RHIC:

- 1. Photons not suppressed
 - Good! γ don't interact with medium
 - N_{coll} scaling works
- 2. Hadrons suppressed in central Au-Au
 - R_{AA} factor 5 suppression
 - Away-side jet highly quenched
- 3. Hadrons not suppressed in d-Au
 - R_{AA} Cronin effect
 - Away-side jet p-p like

Observations at RHIC:

- 1. Photons not suppressed
 - Good! γ don't interact with medium
 - N_{coll} scaling works
- 2. Hadrons suppressed in central Au-Au
 - R_{AA} factor 5 suppression
 - Away-side jet highly quenched
- 3. Hadrons not suppressed in d-Au
 - R_{AA} Cronin effect
 - Away-side jet p-p like

sQGP - strongly coupled: colored objects suffer large E loss

High- p_T suppression

14 January 2002

Volume 88, Number 2

Physical Review Letters

Articles published week ending 15 AUGUST 2003

Volume 91, Number 7

Heavy quarks are gray probes

19

Heavy quarks are gray probes

It gets worse ... bottom not gray either

Can get RAA only if:

include radiation and elastic collisional energy loss assume **all** non-photonic energy loss comes from c

BUT STAR and PHENIX show b contribution in p+p collisions $\Rightarrow \sim 55\%$ at pT^e = 6 GeV/c

Beauty appears equally suppressed

We still don't fully understand energy loss

Needed to measure b and c R_{AA} independently AND accurately

A key measurement for RHIC upgrades and the LHC

Clearly visible above background in both experiments

Underlying event a significant challenge - magnitude & fluctuations

Tools (i.e. FastJet package, gaussian filters) and methods (unfolding) developed to extract and correct the data

Look at the jet energy profile

Calc $N_{jet}(R=0.2)/N_{jet}(R=0.4)$ as function of $p_{T,jet}$

For fixed partonic p⊤ ratio(narrow)>ratio(broad) i.e. ratio(p-p) > ratio(Au-Au) due to QGP interactions

Look at the jet energy profile

Look at the jet energy profile

Calc N_{jet}(R=0.2)/N_{jet}(R=0.4) as function of p_{T,jet}

For fixed partonic p⊤ ratio(narrow)>ratio(broad)

i.e.

ratio(p-p) > ratio(Au-Au)
due to QGP interactions

<u>p-p:</u>

"Focussing" of jet with increasing jet energy

<u>Au-Au:</u>

"Broadening" of jet with increasing jet energy

Modification of the fragmentation

p and E must be conserved so quenched energy must appear somewhere

Prediction that the fragmentation function is modified in the presence of a QGP - more and softer particles produced

Modification of the fragmentation

p and E must be conserved so quenched energy must appear somewhere

Prediction that the fragmentation function is modified in the presence of a QGP - more and softer particles produced

Helen Caines - QCHS - August 2010

Jet-hadron correlations

Jet-hadron correlations

Summary of first decade of RHIC - II

- p-p data well described by pQCD calculations at high pT
- Cold nuclear matter effects are there (d-Au R_{AA} and di-hadron correlations) but cannot explain Au-Au data
- Large suppression of high p_{T} hadrons in the presence of a sQGP
- c and b quarks interact as strongly as the light quarks and gluons (R_{AA} of non-photonic e)
- no theory yet available to precisely describe all suppression results
- Strong evidence of broadening of the jet energy profile (R=0.2/R=0.4)
- Quenched jet energy reappears as numerous large angle, low p_T, particles (jet-hadron correlations)

Results can be explained as due to significant partonic energy loss in the sQGP before fragmentation numerous details left to be understood

The LHC continues the investigation...

BACKUP SLIDES